These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 38353924)

  • 1. β2-Adrenergic Regulation of the Neuromuscular Transmission and Its Lipid-Dependent Switch.
    Gafurova CR; Tsentsevitsky AN; Fedorov NS; Khaziev AN; Malomouzh AI; Petrov AM
    Mol Neurobiol; 2024 Feb; ():. PubMed ID: 38353924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sphingomyelinase modulates synaptic vesicle mobilization at the mice neuromuscular junctions.
    Tsentsevitsky AN; Gafurova CR; Mukhutdinova KA; Giniatullin AR; Fedorov NS; Malomouzh AI; Petrov AM
    Life Sci; 2023 Apr; 318():121507. PubMed ID: 36801470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 24S-hydroxycholesterol suppresses neuromuscular transmission in SOD1(G93A) mice: A possible role of NO and lipid rafts.
    Mukhutdinova KA; Kasimov MR; Giniatullin AR; Zakyrjanova GF; Petrov AM
    Mol Cell Neurosci; 2018 Apr; 88():308-318. PubMed ID: 29550246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of Purinergic Regulation of Neurotransmission in Mouse Neuromuscular Junction: The Role of Redox Signaling and Lipid Rafts.
    Giniatullin AR; Mukhutdinova KA; Petrov AM
    Neurochem Res; 2024 Aug; 49(8):2021-2037. PubMed ID: 38814360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of cholesterol oxidase on neurotransmission and acetylcholine levels at the mice neuromuscular junctions.
    Zakirjanova GF; Giniatullin AR; Gafurova CR; Malomouzh AI; Fedorov NS; Khaziev AN; Tsentsevitsky AN; Petrov AM
    Arch Biochem Biophys; 2023 Nov; 749():109803. PubMed ID: 37955112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Mechanism of α2 adrenoreceptor-dependent Modulation of Neurotransmitter Release at the Neuromuscular Junctions.
    Tsentsevitsky AN; Khuzakhmetova VF; Bukharaeva EA; Petrov AM
    Neurochem Res; 2024 Feb; 49(2):453-465. PubMed ID: 37897557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of β2-laminin alters calcium sensitivity and voltage-gated calcium channel maturation of neurotransmission at the neuromuscular junction.
    Chand KK; Lee KM; Schenning MP; Lavidis NA; Noakes PG
    J Physiol; 2015 Jan; 593(1):245-65. PubMed ID: 25556799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholesterol regulates contractility and inotropic response to β2-adrenoceptor agonist in the mouse atria: Involvement of G
    Odnoshivkina YG; Sytchev VI; Petrov AM
    J Mol Cell Cardiol; 2017 Jun; 107():27-40. PubMed ID: 27170493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Agonist-specific activation of the beta2-adrenoceptor/Gs-protein and beta2-adrenoceptor/Gi-protein pathway in adult rat ventricular cardiomyocytes.
    Pönicke K; Gröner F; Heinroth-Hoffmann I; Brodde OE
    Br J Pharmacol; 2006 Apr; 147(7):714-9. PubMed ID: 16474418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of 5α-cholestan-3-one on the synaptic vesicle cycle at the mouse neuromuscular junction.
    Kasimov MR; Giniatullin AR; Zefirov AL; Petrov AM
    Biochim Biophys Acta; 2015 May; 1851(5):674-85. PubMed ID: 25725358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of the extracellular cAMP-adenosine pathway to dual coupling of β2-adrenoceptors to Gs and Gi proteins in mouse skeletal muscle.
    Duarte T; Menezes-Rodrigues FS; Godinho RO
    J Pharmacol Exp Ther; 2012 Jun; 341(3):820-8. PubMed ID: 22438472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sympathomimetics regulate quantal acetylcholine release at neuromuscular junctions through various types of adrenoreceptors.
    Tsentsevitsky A; Nurullin L; Tyapkina O; Bukharaeva E
    Mol Cell Neurosci; 2020 Oct; 108():103550. PubMed ID: 32890729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. β
    Azevedo Voltarelli V; Coronado M; Gonçalves Fernandes L; Cruz Campos J; Jannig PR; Batista Ferreira JC; Fajardo G; Chakur Brum P; Bernstein D
    Cells; 2021 Jan; 10(1):. PubMed ID: 33450889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced G(i) signaling selectively negates beta2-adrenergic receptor (AR)--but not beta1-AR-mediated positive inotropic effect in myocytes from failing rat hearts.
    Xiao RP; Zhang SJ; Chakir K; Avdonin P; Zhu W; Bond RA; Balke CW; Lakatta EG; Cheng H
    Circulation; 2003 Sep; 108(13):1633-9. PubMed ID: 12975249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Similar oxysterols may lead to opposite effects on synaptic transmission: Olesoxime versus 5α-cholestan-3-one at the frog neuromuscular junction.
    Kasimov MR; Zakyrjanova GF; Giniatullin AR; Zefirov AL; Petrov AM
    Biochim Biophys Acta; 2016 Jul; 1861(7):606-16. PubMed ID: 27102612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental changes in beta2-adrenergic receptor signaling in ventricular myocytes: the role of Gi proteins and caveolae microdomains.
    Rybin VO; Pak E; Alcott S; Steinberg SF
    Mol Pharmacol; 2003 Jun; 63(6):1338-48. PubMed ID: 12761344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tyrosine 308 is necessary for ligand-directed Gs protein-biased signaling of β2-adrenoceptor.
    Woo AY; Jozwiak K; Toll L; Tanga MJ; Kozocas JA; Jimenez L; Huang Y; Song Y; Plazinska A; Pajak K; Paul RK; Bernier M; Wainer IW; Xiao RP
    J Biol Chem; 2014 Jul; 289(28):19351-63. PubMed ID: 24831005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxysterol modulates neurotransmission via liver-X receptor/NO synthase-dependent pathway at the mouse neuromuscular junctions.
    Mukhutdinova KA; Kasimov MR; Zakyrjanova GF; Gumerova MR; Petrov AM
    Neuropharmacology; 2019 May; 150():70-79. PubMed ID: 30898570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of beta-adrenoceptor mediated smooth muscle relaxation and the detection of mRNA for beta1-, beta2- and beta3-adrenoceptors in rat ileum.
    Roberts SJ; Papaioannou M; Evans BA; Summers RJ
    Br J Pharmacol; 1999 Jun; 127(4):949-61. PubMed ID: 10433503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular Acidification Suppresses Synaptic Vesicle Mobilization in the Motor Nerve Terminals.
    Zefirov AL; Mukhametzyanov RD; Zakharov AV; Mukhutdinova KA; Odnoshivkina UG; Petrov AM
    Acta Naturae; 2020; 12(4):105-113. PubMed ID: 33456982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.