These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38354076)

  • 1. A Hybrid Controller for Musculoskeletal Robots Targeting Lifting Tasks in Industrial Metaverse.
    Qin S; Li H; Cheng L
    IEEE Trans Cybern; 2024 May; 54(5):2708-2719. PubMed ID: 38354076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-learning sliding mode control based on adaptive dynamic programming for nonholonomic mobile robots.
    Ma Q; Zhang X; Xu X; Yang Y; Wu EQ
    ISA Trans; 2023 Nov; 142():136-147. PubMed ID: 37599205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust tracking control for magnetic wheeled mobile robots using adaptive dynamic programming.
    Fang H; Zhu Y; Dian S; Xiang G; Guo R; Li S
    ISA Trans; 2022 Sep; 128(Pt A):123-132. PubMed ID: 34756757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive formation control of leader-follower mobile robots using reinforcement learning and the Fourier series expansion.
    Khodamipour G; Khorashadizadeh S; Farshad M
    ISA Trans; 2023 Jul; 138():63-73. PubMed ID: 37012165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observer-based event-triggered recursive optimal tracking control for a class of strict-feedback nonlinear systems.
    Zhang W; Yan J
    ISA Trans; 2024 Feb; 145():148-162. PubMed ID: 37993339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An adaptive deep reinforcement learning approach for MIMO PID control of mobile robots.
    Carlucho I; De Paula M; Acosta GG
    ISA Trans; 2020 Jul; 102():280-294. PubMed ID: 32085878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous Optimization of Discrete and Continuous Parameters Defining a Robot Morphology and Controller.
    Koike R; Ariizumi R; Matsuno F
    IEEE Trans Neural Netw Learn Syst; 2024 Oct; 35(10):13816-13829. PubMed ID: 37224357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning of a neuro-fuzzy controller by genetic algorithm.
    Seng TL; Bin Khalid M; Yusof R
    IEEE Trans Syst Man Cybern B Cybern; 1999; 29(2):226-36. PubMed ID: 18252294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Load mitigation of a class of 5-MW wind turbine with RBF neural network based fractional-order PID controller.
    Asgharnia A; Jamali A; Shahnazi R; Maheri A
    ISA Trans; 2020 Jan; 96():272-286. PubMed ID: 31326079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Muscle Synergy-Inspired Adaptive Control Scheme for a Hybrid Walking Neuroprosthesis.
    Alibeji NA; Kirsch NA; Sharma N
    Front Bioeng Biotechnol; 2015; 3():203. PubMed ID: 26734606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reinforcement learning controller design for affine nonlinear discrete-time systems using online approximators.
    Yang Q; Jagannathan S
    IEEE Trans Syst Man Cybern B Cybern; 2012 Apr; 42(2):377-90. PubMed ID: 21947529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning.
    Luo S; Androwis G; Adamovich S; Nunez E; Su H; Zhou X
    J Neuroeng Rehabil; 2023 Mar; 20(1):34. PubMed ID: 36935514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid Neural Network Cerebellar Model Articulation Controller Design for Non-linear Dynamic Time-Varying Plants.
    Le TL; Huynh TT; Hong SK; Lin CM
    Front Neurosci; 2020; 14():695. PubMed ID: 32848536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controller Design and Stability Analysis of Intensification Process using Analytical Exact Gain-Phase Margin approach.
    Lee CS; Abd Shukor SR
    Environ Sci Pollut Res Int; 2023 Dec; 30(60):124790-124805. PubMed ID: 36961637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recurrent neural network based high-precision position compensation control of magnetic levitation system.
    Huang Z; Zhu J; Shao J; Wei Z; Tang J
    Sci Rep; 2022 Jul; 12(1):11435. PubMed ID: 35794141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Vibration Control Method for Hybrid-Structured Flexible Manipulator Based on Sliding Mode Control and Reinforcement Learning.
    Long T; Li E; Hu Y; Yang L; Fan J; Liang Z; Guo R
    IEEE Trans Neural Netw Learn Syst; 2021 Feb; 32(2):841-852. PubMed ID: 32275619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Navigation Path Based Universal Mobile Manipulator Integrated Controller (NUMMIC).
    Kim T; Kim M; Yang S; Kim D
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust neural-network control of rigid-link electrically driven robots.
    Kwan C; Lewis FL; Dawson DM
    IEEE Trans Neural Netw; 1998; 9(4):581-8. PubMed ID: 18252482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional Nonlinear Model Predictive Control Based on Adaptive Dynamic Programming.
    Dong L; Yan J; Yuan X; He H; Sun C
    IEEE Trans Cybern; 2019 Dec; 49(12):4206-4218. PubMed ID: 30130246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable force control and contact transition of a single link flexible robot using a fractional-order controller.
    Feliu-Talegon D; Feliu-Batlle V; Tejado I; Vinagre BM; HosseinNia SH
    ISA Trans; 2019 Jun; 89():139-157. PubMed ID: 30772063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.