These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 38354084)

  • 1. Computational protocol to identify shared transcriptional risks and mutually beneficial compounds between diseases.
    Gao H; Zhang M; Baylis RA; Wang F; Björkegren JLM; Kovacic JJ; Ruusalepp A; Leeper NJ
    STAR Protoc; 2024 Mar; 5(1):102883. PubMed ID: 38354084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational workflow for functional characterization of COVID-19 through secondary data analysis.
    Ghandikota S; Sharma M; Jegga AG
    STAR Protoc; 2021 Dec; 2(4):100873. PubMed ID: 34746856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-negative tensor factorization workflow for time series biomedical data.
    Tsuyuzaki K; Yoshida N; Ishikawa T; Goshima Y; Kawakami E
    STAR Protoc; 2023 Sep; 4(3):102318. PubMed ID: 37421614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated workflow for discovery of microprotein-coding small open reading frames.
    Cao K; Hajy Heydary Y; Tong G; Martinez TF
    STAR Protoc; 2023 Dec; 4(4):102649. PubMed ID: 37874679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of germline-driven ancestry-associated gene expression in cancers.
    Chambwe N; Sayaman RW; Hu D; Huntsman S; ; Kemal A; Caesar-Johnson S; Zenklusen JC; Ziv E; Beroukhim R; Cherniack AD
    STAR Protoc; 2022 Sep; 3(3):101586. PubMed ID: 35942349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and computational workflow for the analysis of tRNA pools from eukaryotic cells by mim-tRNAseq.
    Behrens A; Nedialkova DD
    STAR Protoc; 2022 Sep; 3(3):101579. PubMed ID: 35942339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protocol for using GRPath to identify putative gene regulation paths in complex human diseases.
    Xi X; Li H; Wei L; Zhang X
    STAR Protoc; 2022 Dec; 3(4):101831. PubMed ID: 36386883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational workflow for integrative analyses of DNA replication timing, epigenomic, and transcriptomic data.
    Ji F; Van Rechem C; Whetstine JR; Sadreyev RI
    STAR Protoc; 2022 Dec; 3(4):101827. PubMed ID: 36386876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protocol to assess fatal embolism risks from human stem cells.
    Ma F; Zhang J; Jin X; Han P; Liu Y; Zhang T; Yan K; Kang YJ
    STAR Protoc; 2023 May; 4(2):102268. PubMed ID: 37133989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational workflow for investigating highly variable genes in single-cell RNA-seq across multiple time points and cell types.
    Arora JK; Opasawatchai A; Teichmann SA; Matangkasombut P; Charoensawan V
    STAR Protoc; 2023 Sep; 4(3):102387. PubMed ID: 37379219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protocol to screen for Sorafenib resistance regulators using pooled lentiviral shRNA library and a Sorafenib-resistant hepatocellular carcinoma cell model.
    Gao R; Tang F; Christofori G
    STAR Protoc; 2023 Apr; 4(2):102273. PubMed ID: 37126443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protocol for analysis of RNA-sequencing and proteome profiling data for subgroup identification and comparison.
    Yang KC; Gorski SM
    STAR Protoc; 2022 Jun; 3(2):101283. PubMed ID: 35634361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protocol to explain graph neural network predictions using an edge-centric Shapley value-based approach.
    Mastropietro A; Pasculli G; Bajorath J
    STAR Protoc; 2022 Dec; 3(4):101887. PubMed ID: 36595907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A computational pipeline to visualize DNA-protein binding states using dSMF data.
    Rao S; Ramachandran S
    STAR Protoc; 2022 Jun; 3(2):101299. PubMed ID: 35463472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An
    Li Z; Yao Y; Cheng X; Li W; Fei T
    STAR Protoc; 2021 Sep; 2(3):100653. PubMed ID: 34286288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protocol for computationally evaluating the loss of stoichiometry and coordinated expression of proteins.
    Hinz S; Todhunter ME; LaBarge MA
    STAR Protoc; 2022 Jun; 3(2):101182. PubMed ID: 35313706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating neuroimaging and gene expression data using the imaging transcriptomics toolbox.
    Giacomel A; Martins D; Frigo M; Turkheimer F; Williams SCR; Dipasquale O; Veronese M
    STAR Protoc; 2022 Jun; 3(2):101315. PubMed ID: 35479111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-omics profiling of single nuclei from frozen archived postmortem human pituitary tissue.
    Mendelev N; Zamojski M; Amper MAS; Cheng WS; Pincas H; Nair VD; Zaslavsky E; Sealfon SC; Ruf-Zamojski F
    STAR Protoc; 2022 Jun; 3(2):101446. PubMed ID: 35693209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactivity-based RNA profiling for analyzing transcriptome interactions of small molecules in human cells.
    Fang L; Kool ET
    STAR Protoc; 2023 Dec; 4(4):102670. PubMed ID: 37917579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protocol for CAROM: A machine learning tool to predict post-translational regulation from metabolic signatures.
    Smith K; Rhoads N; Chandrasekaran S
    STAR Protoc; 2022 Dec; 3(4):101799. PubMed ID: 36340881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.