These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 38354091)

  • 1. Fish Physiologically Based Toxicokinetic Modeling Approach for In Vitro-In Vivo and Cross-Species Extrapolation of Endocrine-Disrupting Chemicals in Risk Assessment.
    Xie R; Xu Y; Ma M; Wang Z
    Environ Sci Technol; 2024 Feb; 58(8):3677-3689. PubMed ID: 38354091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro to in vivo extrapolation for predicting human equivalent dose of phenolic endocrine disrupting chemicals: PBTK model development, biological pathways, outcomes and performance.
    Xie R; Wang X; Xu Y; Zhang L; Ma M; Wang Z
    Sci Total Environ; 2023 Nov; 897():165271. PubMed ID: 37422235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced prediction of internal concentrations of phenolic endocrine disrupting chemicals and their metabolites in fish by a physiologically based toxicokinetic incorporating metabolism (PBTK-MT) model.
    Liu YH; Yao L; Huang Z; Zhang YY; Chen CE; Zhao JL; Ying GG
    Environ Pollut; 2022 Dec; 314():120290. PubMed ID: 36180004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput PBTK models for
    Breen M; Ring CL; Kreutz A; Goldsmith MR; Wambaugh JF
    Expert Opin Drug Metab Toxicol; 2021 Aug; 17(8):903-921. PubMed ID: 34056988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro-to-in vivo extrapolation (IVIVE) by PBTK modeling for animal-free risk assessment approaches of potential endocrine-disrupting compounds.
    Fabian E; Gomes C; Birk B; Williford T; Hernandez TR; Haase C; Zbranek R; van Ravenzwaay B; Landsiedel R
    Arch Toxicol; 2019 Feb; 93(2):401-416. PubMed ID: 30552464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using the concordance of in vitro and in vivo data to evaluate extrapolation assumptions.
    Honda GS; Pearce RG; Pham LL; Setzer RW; Wetmore BA; Sipes NS; Gilbert J; Franz B; Thomas RS; Wambaugh JF
    PLoS One; 2019; 14(5):e0217564. PubMed ID: 31136631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-Species Extrapolation of Uptake and Disposition of Neutral Organic Chemicals in Fish Using a Multispecies Physiologically-Based Toxicokinetic Model Framework.
    Brinkmann M; Schlechtriem C; Reininghaus M; Eichbaum K; Buchinger S; Reifferscheid G; Hollert H; Preuss TG
    Environ Sci Technol; 2016 Feb; 50(4):1914-23. PubMed ID: 26794144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A generic PBTK model implemented in the MCRA platform: Predictive performance and uses in risk assessment of chemicals.
    Tebby C; van der Voet H; de Sousa G; Rorije E; Kumar V; de Boer W; Kruisselbrink JW; Bois FY; Faniband M; Moretto A; Brochot C
    Food Chem Toxicol; 2020 Aug; 142():111440. PubMed ID: 32473292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating In Vitro-In Vivo Extrapolation of Toxicokinetics.
    Wambaugh JF; Hughes MF; Ring CL; MacMillan DK; Ford J; Fennell TR; Black SR; Snyder RW; Sipes NS; Wetmore BA; Westerhout J; Setzer RW; Pearce RG; Simmons JE; Thomas RS
    Toxicol Sci; 2018 May; 163(1):152-169. PubMed ID: 29385628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A physiologically based toxicokinetic model for the zebrafish Danio rerio.
    Péry AR; Devillers J; Brochot C; Mombelli E; Palluel O; Piccini B; Brion F; Beaudouin R
    Environ Sci Technol; 2014; 48(1):781-90. PubMed ID: 24295030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generic physiologically-based toxicokinetic modelling for fish: Integration of environmental factors and species variability.
    Grech A; Tebby C; Brochot C; Bois FY; Bado-Nilles A; Dorne JL; Quignot N; Beaudouin R
    Sci Total Environ; 2019 Feb; 651(Pt 1):516-531. PubMed ID: 30243171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing Toxicokinetic Uncertainty and Variability in Risk Prioritization.
    Wambaugh JF; Wetmore BA; Ring CL; Nicolas CI; Pearce RG; Honda GS; Dinallo R; Angus D; Gilbert J; Sierra T; Badrinarayanan A; Snodgrass B; Brockman A; Strock C; Setzer RW; Thomas RS
    Toxicol Sci; 2019 Dec; 172(2):235-251. PubMed ID: 31532498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Multispecies Toxicokinetic Modeling Approach in Support of Chemical Risk Assessment.
    Mangold-Döring A; Grimard C; Green D; Petersen S; Nichols JW; Hogan N; Weber L; Hollert H; Hecker M; Brinkmann M
    Environ Sci Technol; 2021 Jul; 55(13):9109-9118. PubMed ID: 34165962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a rapid, generic human gestational dose model.
    Kapraun DF; Sfeir M; Pearce RG; Davidson-Fritz SE; Lumen A; Dallmann A; Judson RS; Wambaugh JF
    Reprod Toxicol; 2022 Oct; 113():172-188. PubMed ID: 36122840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measured and modeled toxicokinetics in cultured fish cells and application to in vitro-in vivo toxicity extrapolation.
    Stadnicka-Michalak J; Tanneberger K; Schirmer K; Ashauer R
    PLoS One; 2014; 9(3):e92303. PubMed ID: 24647349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental effect assessment for sexual endocrine-disrupting chemicals: Fish testing strategy.
    Knacker T; Boettcher M; Frische T; Rufli H; Stolzenberg HC; Teigeler M; Zok S; Braunbeck T; Schäfers C
    Integr Environ Assess Manag; 2010 Oct; 6(4):653-62. PubMed ID: 20872646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bridging the Data Gap From
    Zhang Q; Li J; Middleton A; Bhattacharya S; Conolly RB
    Front Public Health; 2018; 6():261. PubMed ID: 30255008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicokinetic models and related tools in environmental risk assessment of chemicals.
    Grech A; Brochot C; Dorne JL; Quignot N; Bois FY; Beaudouin R
    Sci Total Environ; 2017 Feb; 578():1-15. PubMed ID: 27842969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-species conservation of endocrine pathways: a critical analysis of tier 1 fish and rat screening assays with 12 model chemicals.
    Ankley GT; Gray LE
    Environ Toxicol Chem; 2013 Apr; 32(5):1084-7. PubMed ID: 23401061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporating population variability and susceptible subpopulations into dosimetry for high-throughput toxicity testing.
    Wetmore BA; Allen B; Clewell HJ; Parker T; Wambaugh JF; Almond LM; Sochaski MA; Thomas RS
    Toxicol Sci; 2014 Nov; 142(1):210-24. PubMed ID: 25145659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.