These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 38354193)
1. Enhancing machine learning-based sentiment analysis through feature extraction techniques. A Semary N; Ahmed W; Amin K; Pławiak P; Hammad M PLoS One; 2024; 19(2):e0294968. PubMed ID: 38354193 [TBL] [Abstract][Full Text] [Related]
2. Classification of movie reviews using term frequency-inverse document frequency and optimized machine learning algorithms. Naeem MZ; Rustam F; Mehmood A; Mui-Zzud-Din ; Ashraf I; Choi GS PeerJ Comput Sci; 2022; 8():e914. PubMed ID: 35494818 [TBL] [Abstract][Full Text] [Related]
3. Semantic relational machine learning model for sentiment analysis using cascade feature selection and heterogeneous classifier ensemble. Yenkikar A; Babu CN; Hemanth DJ PeerJ Comput Sci; 2022; 8():e1100. PubMed ID: 36262147 [TBL] [Abstract][Full Text] [Related]
4. Sentiment Analysis and Comprehensive Evaluation of Supervised Machine Learning Models Using Twitter Data on Russia-Ukraine War. Wadhwani GK; Varshney PK; Gupta A; Kumar S SN Comput Sci; 2023; 4(4):346. PubMed ID: 37125219 [TBL] [Abstract][Full Text] [Related]
5. Effect of incremental feature enrichment on healthcare text classification system: A machine learning paradigm. Srivastava SK; Singh SK; Suri JS Comput Methods Programs Biomed; 2019 Apr; 172():35-51. PubMed ID: 30902126 [TBL] [Abstract][Full Text] [Related]
6. Sentiment analysis of Arabic social media texts: A machine learning approach to deciphering customer perceptions. Alsemaree O; Alam AS; Gill SS; Uhlig S Heliyon; 2024 May; 10(9):e27863. PubMed ID: 38711635 [TBL] [Abstract][Full Text] [Related]
7. Automated Classification of Free-Text Radiology Reports: Using Different Feature Extraction Methods to Identify Fractures of the Distal Fibula. Dewald CLA; Balandis A; Becker LS; Hinrichs JB; von Falck C; Wacker FK; Laser H; Gerbel S; Winther HB; Apfel-Starke J Rofo; 2023 Aug; 195(8):713-719. PubMed ID: 37160146 [TBL] [Abstract][Full Text] [Related]
9. Heterogeneous Ensemble Deep Learning Model for Enhanced Arabic Sentiment Analysis. Saleh H; Mostafa S; Alharbi A; El-Sappagh S; Alkhalifah T Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632116 [TBL] [Abstract][Full Text] [Related]
10. Quantum computing and machine learning for Arabic language sentiment classification in social media. Omar A; Abd El-Hafeez T Sci Rep; 2023 Oct; 13(1):17305. PubMed ID: 37828056 [TBL] [Abstract][Full Text] [Related]
11. Assessing Electronic Cigarette-Related Tweets for Sentiment and Content Using Supervised Machine Learning. Cole-Lewis H; Varghese A; Sanders A; Schwarz M; Pugatch J; Augustson E J Med Internet Res; 2015 Aug; 17(8):e208. PubMed ID: 26307512 [TBL] [Abstract][Full Text] [Related]
12. Multi-level aspect based sentiment classification of Twitter data: using hybrid approach in deep learning. Janjua SH; Siddiqui GF; Sindhu MA; Rashid U PeerJ Comput Sci; 2021; 7():e433. PubMed ID: 33954232 [TBL] [Abstract][Full Text] [Related]
13. ArabBert-LSTM: improving Arabic sentiment analysis based on transformer model and Long Short-Term Memory. Alosaimi W; Saleh H; Hamzah AA; El-Rashidy N; Alharb A; Elaraby A; Mostafa S Front Artif Intell; 2024; 7():1408845. PubMed ID: 39015364 [TBL] [Abstract][Full Text] [Related]
14. Semi-supervised distributed representations of documents for sentiment analysis. Park S; Lee J; Kim K Neural Netw; 2019 Nov; 119():139-150. PubMed ID: 31425854 [TBL] [Abstract][Full Text] [Related]
15. Transfer Learning for Sentiment Analysis Using BERT Based Supervised Fine-Tuning. Prottasha NJ; Sami AA; Kowsher M; Murad SA; Bairagi AK; Masud M; Baz M Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684778 [TBL] [Abstract][Full Text] [Related]
16. Improving Sentiment Analysis for Social Media Applications Using an Ensemble Deep Learning Language Model. Alsayat A Arab J Sci Eng; 2022; 47(2):2499-2511. PubMed ID: 34660170 [TBL] [Abstract][Full Text] [Related]
17. Investigating response behavior through TF-IDF and Word2vec text analysis: A case study of PISA 2012 problem-solving process data. Zhou J; Ye Z; Zhang S; Geng Z; Han N; Yang T Heliyon; 2024 Aug; 10(16):e35945. PubMed ID: 39247276 [TBL] [Abstract][Full Text] [Related]
18. Software Requirements Classification Using Machine Learning Algorithms. Dias Canedo E; Cordeiro Mendes B Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286826 [TBL] [Abstract][Full Text] [Related]