These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38354357)

  • 1. Fluorescence Enhancement in Topologically Optimized Gallium Phosphide All-Dielectric Nanoantennas.
    Vidal C; Tilmann B; Tiwari S; Raziman TV; Maier SA; Wenger J; Sapienza R
    Nano Lett; 2024 Feb; 24(8):2437-2443. PubMed ID: 38354357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bridging the Gap between Dielectric Nanophotonics and the Visible Regime with Effectively Lossless Gallium Phosphide Antennas.
    Cambiasso J; Grinblat G; Li Y; Rakovich A; Cortés E; Maier SA
    Nano Lett; 2017 Feb; 17(2):1219-1225. PubMed ID: 28094990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-emitter super-resolved imaging of radiative decay rate enhancement in dielectric gap nanoantennas.
    Córdova-Castro RM; van Dam B; Lauri A; Maier SA; Sapienza R; De Wilde Y; Izeddin I; Krachmalnicoff V
    Light Sci Appl; 2024 Jan; 13(1):7. PubMed ID: 38167240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dielectric optical nanoantennas.
    Hasan MR; Hellesø OG
    Nanotechnology; 2021 May; 32(20):202001. PubMed ID: 33461187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-scale controlled coupling of single-photon emitters to high-index dielectric nanoantennas by AFM nanoxerography.
    Humbert M; Hernandez R; Mallet N; Larrieu G; Larrey V; Fournel F; Guérin F; Palleau E; Paillard V; Cuche A; Ressier L
    Nanoscale; 2023 Jan; 15(2):599-608. PubMed ID: 36485024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-Dielectric Silicon Nanogap Antennas To Enhance the Fluorescence of Single Molecules.
    Regmi R; Berthelot J; Winkler PM; Mivelle M; Proust J; Bedu F; Ozerov I; Begou T; Lumeau J; Rigneault H; García-Parajó MF; Bidault S; Wenger J; Bonod N
    Nano Lett; 2016 Aug; 16(8):5143-51. PubMed ID: 27399057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Femtosecond Laser-Printed Gold Nanoantennas for Electrically Driven and Bias-Tuned Nanoscale Light Sources Operating in Visible and Infrared Spectral Ranges.
    Lebedev DV; Solomonov NA; Dvoretckaia LN; Shkoldin VA; Permyakov DV; Arkhipov AV; Mozharov AM; Pavlov DV; Kuchmizhak AA; Mukhin IS
    J Phys Chem Lett; 2023 Jun; 14(22):5134-5140. PubMed ID: 37252711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single Photon Source from a Nanoantenna-Trapped Single Quantum Dot.
    Jiang Q; Roy P; Claude JB; Wenger J
    Nano Lett; 2021 Aug; 21(16):7030-7036. PubMed ID: 34398613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing Magnetic Light Emission with All-Dielectric Optical Nanoantennas.
    Sanz-Paz M; Ernandes C; Esparza JU; Burr GW; van Hulst NF; Maitre A; Aigouy L; Gacoin T; Bonod N; Garcia-Parajo MF; Bidault S; Mivelle M
    Nano Lett; 2018 Jun; 18(6):3481-3487. PubMed ID: 29701991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-enhanced photoluminescence and Raman spectroscopy of single molecule confined in coupled Au bowtie nanoantenna.
    Pei H; Peng W; Zhang J; Zhao J; Qi J; Yu C; Li J; Wei Y
    Nanotechnology; 2024 Jan; 35(15):. PubMed ID: 38176065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale Design of the Local Density of Optical States.
    Mignuzzi S; Vezzoli S; Horsley SAR; Barnes WL; Maier SA; Sapienza R
    Nano Lett; 2019 Mar; 19(3):1613-1617. PubMed ID: 30786717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Second harmonic generation spectroscopy on hybrid plasmonic/dielectric nanoantennas.
    Linnenbank H; Grynko Y; Förstner J; Linden S
    Light Sci Appl; 2016 Jan; 5(1):e16013. PubMed ID: 30167115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasensitive Transmissive Infrared Spectroscopy via Loss Engineering of Metallic Nanoantennas for Compact Devices.
    Wei J; Li Y; Chang Y; Hasan DMN; Dong B; Ma Y; Qiu CW; Lee C
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):47270-47278. PubMed ID: 31769956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quasi-BIC Modes in All-Dielectric Slotted Nanoantennas for Enhanced Er
    Kalinic B; Cesca T; Balasa IG; Trevisani M; Jacassi A; Maier SA; Sapienza R; Mattei G
    ACS Photonics; 2023 Feb; 10(2):534-543. PubMed ID: 36820324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Photon Nanoantennas.
    Koenderink AF
    ACS Photonics; 2017 Apr; 4(4):710-722. PubMed ID: 29354664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Matching Nanoantenna Field Confinement to FRET Distances Enhances Förster Energy Transfer Rates.
    Ghenuche P; Mivelle M; de Torres J; Moparthi SB; Rigneault H; Van Hulst NF; García-Parajó MF; Wenger J
    Nano Lett; 2015 Sep; 15(9):6193-201. PubMed ID: 26237534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Directive Hybrid Metal-Dielectric Yagi-Uda Nanoantennas.
    Ho J; Fu YH; Dong Z; Paniagua-Dominguez R; Koay EHH; Yu YF; Valuckas V; Kuznetsov AI; Yang JKW
    ACS Nano; 2018 Aug; 12(8):8616-8624. PubMed ID: 30048106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electric field enhancement by a hybrid dielectric-metal nanoantenna with a toroidal dipole contribution.
    Mu H; Wang Y; Lv J; Yi Z; Yang L; Chu PK; Liu C
    Appl Opt; 2022 Aug; 61(24):7125-7131. PubMed ID: 36256330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon-emitter interaction using integrated ring grating-nanoantenna structures.
    Rahbany N; Geng W; Bachelot R; Couteau C
    Nanotechnology; 2017 May; 28(18):185201. PubMed ID: 28323251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and Optimization of All-Dielectric Fluorescence Enhancing Metasurfaces: Towards Advanced Metasurface-Assisted Optrodes.
    Alhalaby H; Principe M; Zaraket H; Vaiano P; Aliberti A; Quero G; Crescitelli A; Di Meo V; Esposito E; Consales M; Cusano A
    Biosensors (Basel); 2022 Apr; 12(5):. PubMed ID: 35624565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.