BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38354514)

  • 1. Modeling the effects of hydration on viscoelastic properties of nucleus pulposus tissue in shear using the fractional Zener model.
    Co M; Pack C; Osborn-King Z; Raterman B; Kolipaka A; Bentil SA; Walter BA
    J Biomech; 2024 Feb; 164():111965. PubMed ID: 38354514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is the nucleus pulposus a solid or a fluid? Mechanical behaviors of the nucleus pulposus of the human intervertebral disc.
    Iatridis JC; Weidenbaum M; Setton LA; Mow VC
    Spine (Phila Pa 1976); 1996 May; 21(10):1174-84. PubMed ID: 8727192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleus pulposus structure and function assessed in shear using magnetic resonance elastography, quantitative MRI, and rheometry.
    Co M; Raterman B; Klamer B; Kolipaka A; Walter B
    JOR Spine; 2024 Jun; 7(2):e1335. PubMed ID: 38741919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The viscoelastic behavior of the non-degenerate human lumbar nucleus pulposus in shear.
    Iatridis JC; Setton LA; Weidenbaum M; Mow VC
    J Biomech; 1997 Oct; 30(10):1005-13. PubMed ID: 9391867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Injectable hydrogel with nucleus pulposus-matched viscoelastic property prevents intervertebral disc degeneration.
    Jia H; Lin X; Wang D; Wang J; Shang Q; He X; Wu K; Zhao B; Peng P; Wang H; Wang D; Li P; Yang L; Luo Z; Yang L
    J Orthop Translat; 2022 Mar; 33():162-173. PubMed ID: 35415072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alterations in T2 relaxation magnetic resonance imaging of the ovine intervertebral disc due to nonenzymatic glycation.
    Jazini E; Sharan AD; Morse LJ; Dyke JP; Aronowitz EB; Chen LK; Tang SY
    Spine (Phila Pa 1976); 2012 Feb; 37(4):E209-15. PubMed ID: 21857410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency dependence of complex moduli of brain tissue using a fractional Zener model.
    Kohandel M; Sivaloganathan S; Tenti G; Darvish K
    Phys Med Biol; 2005 Jun; 50(12):2799-805. PubMed ID: 15930603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical and rheological characterization of mild intervertebral disc degeneration in a large animal model.
    Detiger SE; Hoogendoorn RJ; van der Veen AJ; van Royen BJ; Helder MN; Koenderink GH; Smit TH
    J Orthop Res; 2013 May; 31(5):703-9. PubMed ID: 23255234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of fiber volume and material property and nucleus pulposus area on intervertebral disc mechanical behavior].
    Dong R; Liu Z; Guo Y; An Y; Shi Z; Shi M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Feb; 41(1):144-151. PubMed ID: 38403615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency-dependent shear properties of annulus fibrosus and nucleus pulposus by magnetic resonance elastography.
    Beauchemin PF; Bayly PV; Garbow JR; Schmidt JLS; Okamoto RJ; Chériet F; Périé D
    NMR Biomed; 2018 Oct; 31(10):e3918. PubMed ID: 29727498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleus pulposus cell response to confined and unconfined compression implicates mechanoregulation by fluid shear stress.
    Wang P; Yang L; Hsieh AH
    Ann Biomed Eng; 2011 Mar; 39(3):1101-11. PubMed ID: 21132369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detailed mechanical characterization of the transition zone: New insight into the integration between the annulus and nucleus of the intervertebral disc.
    Tavakoli J; Tipper JL
    Acta Biomater; 2022 Apr; 143():87-99. PubMed ID: 35259517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Total disc replacement using a tissue-engineered intervertebral disc in vivo: new animal model and initial results.
    Gebhard H; Bowles R; Dyke J; Saleh T; Doty S; Bonassar L; Härtl R
    Evid Based Spine Care J; 2010 Aug; 1(2):62-6. PubMed ID: 23637671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations in the mechanical behavior of the human lumbar nucleus pulposus with degeneration and aging.
    Iatridis JC; Setton LA; Weidenbaum M; Mow VC
    J Orthop Res; 1997 Mar; 15(2):318-22. PubMed ID: 9167638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viscoelastic properties of shock wave exposed brain tissue subjected to unconfined compression experiments.
    McCarty AK; Zhang L; Hansen S; Jackson WJ; Bentil SA
    J Mech Behav Biomed Mater; 2019 Dec; 100():103380. PubMed ID: 31446342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Injectable nanostructured colloidal gels resembling native nucleus pulposus as carriers of mesenchymal stem cells for the repair of degenerated intervertebral discs.
    Wang Y; Zhang Y; Chen K; Shao F; Wu Y; Guo C; Wu H; Zhang D; Li W; Kong Q; Wang H
    Mater Sci Eng C Mater Biol Appl; 2021 Sep; 128():112343. PubMed ID: 34474893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the mechanical behavior of degrading swine neural tissue at low strain rates via the fractional Zener constitutive model.
    Bentil SA; Dupaix RB
    J Mech Behav Biomed Mater; 2014 Feb; 30():83-90. PubMed ID: 24269943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of loading rate and hydration on the mechanical properties of the disc.
    Race A; Broom ND; Robertson P
    Spine (Phila Pa 1976); 2000 Mar; 25(6):662-9. PubMed ID: 10752096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic nucleus pulposus scaffold created from bovine caudal intervertebral disc tissue utilizing an optimal decellularization procedure.
    Fernandez C; Marionneaux A; Gill S; Mercuri J
    J Biomed Mater Res A; 2016 Dec; 104(12):3093-3106. PubMed ID: 27507100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.