These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 38354521)
41. Water-soluble, core-modified porphyrins as novel, longer-wavelength-absorbing sensitizers for photodynamic therapy. II. Effects of core heteroatoms and meso-substituents on biological activity. Hilmey DG; Abe M; Nelen MI; Stilts CE; Baker GA; Baker SN; Bright FV; Davies SR; Gollnick SO; Oseroff AR; Gibson SL; Hilf R; Detty MR J Med Chem; 2002 Jan; 45(2):449-61. PubMed ID: 11784149 [TBL] [Abstract][Full Text] [Related]
42. Anticancer effect of LS-HB-mediated photodynamic therapy on hepatocellular carcinoma in vitro and in vivo. Liu C; Wu T; Wang S; Zhou W; Li Y; Chen X; Li W; Huang Z; Li T; Yang L; Xu P; Liuzong J; Xie J; Yang D; Yan J; Luo F Photodiagnosis Photodyn Ther; 2020 Jun; 30():101718. PubMed ID: 32165340 [TBL] [Abstract][Full Text] [Related]
43. New porphyrin photosensitizers-Synthesis, singlet oxygen yield, photophysical properties and application in PDT. Wang X; Lv H; Sun Y; Zu G; Zhang X; Song Y; Zhao F; Wang J Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 279():121447. PubMed ID: 35689847 [TBL] [Abstract][Full Text] [Related]
44. Azide-modified corrole phosphorus complexes for endoplasmic reticulum-targeted fluorescence bioimaging and effective cancer photodynamic therapy. Cen JH; Xie QH; Guo GH; Gao LJ; Liao YH; Zhong XP; Liu HY Eur J Med Chem; 2024 Feb; 265():116102. PubMed ID: 38176359 [TBL] [Abstract][Full Text] [Related]
45. Palladium porphyrin complexes for photodynamic cancer therapy: effect of porphyrin units and metal. Deng J; Li H; Yang M; Wu F Photochem Photobiol Sci; 2020 Jul; 19(7):905-912. PubMed ID: 32369050 [TBL] [Abstract][Full Text] [Related]
46. Photodynamic effects of porphyrin and chlorin photosensitizers in human colon adenocarcinoma cells. Banfi S; Caruso E; Caprioli S; Mazzagatti L; Canti G; Ravizza R; Gariboldi M; Monti E Bioorg Med Chem; 2004 Sep; 12(18):4853-60. PubMed ID: 15336264 [TBL] [Abstract][Full Text] [Related]
47. Cascade-amplifying synergistic effects of chemo-photodynamic therapy using ROS-responsive polymeric nanocarriers. Sun CY; Cao Z; Zhang XJ; Sun R; Yu CS; Yang X Theranostics; 2018; 8(11):2939-2953. PubMed ID: 29896295 [TBL] [Abstract][Full Text] [Related]
48. Tetraphenylporphyrin derivatives possessing piperidine group as potential agents for photodynamic therapy. Liao PY; Gao YH; Wang XR; Bao LL; Bian J; Hu TS; Zheng MZ; Yan YJ; Chen ZL J Photochem Photobiol B; 2016 Dec; 165():213-219. PubMed ID: 27816643 [TBL] [Abstract][Full Text] [Related]
49. Design and Synthesis of New Porphyrin Analogues as Potent Photosensitizers for Photodynamic Therapy: Spectroscopic Approach. Mahajan PG; Dige NC; Vanjare BD; Kim CH; Seo SY; Lee KH J Fluoresc; 2020 Mar; 30(2):397-406. PubMed ID: 32088851 [TBL] [Abstract][Full Text] [Related]
50. Meso-tetraphenylporphyrin dimer derivative as a potential photosensitizer in photodynamic therapy. Faustino MA; Neves MG; Vicente MG; Cavaleiro JA; Neumann M; Brauer HD; Jori G Photochem Photobiol; 1997 Oct; 66(4):405-12. PubMed ID: 9337611 [TBL] [Abstract][Full Text] [Related]
51. Preclinical Study of Antineoplastic Sinoporphyrin Sodium-PDT via In Vitro and In Vivo Models. Shi R; Li C; Jiang Z; Li W; Wang A; Wei J Molecules; 2017 Jan; 22(1):. PubMed ID: 28085075 [TBL] [Abstract][Full Text] [Related]
52. Effect of the nature of the chelated metal on the photodynamic activity of metalloporphyrins. Abbas G; Alibrahim F; Kankouni R; Al-Belushi S; Al-Mutairi DA; Tovmasyan A; Batinic-Haberle I; Benov L Free Radic Res; 2023; 57(6-12):487-499. PubMed ID: 38035627 [TBL] [Abstract][Full Text] [Related]
53. Biotin-conjugated Ru(II) complexes with AIE characteristics as mitochondria-targeted photosensitizers for enhancing photodynamic therapy by disrupting cellular redox balance. Wei L; He X; Zhao D; Kandawa-Shultz M; Shao G; Wang Y Eur J Med Chem; 2024 Jan; 264():115985. PubMed ID: 38016298 [TBL] [Abstract][Full Text] [Related]
54. Codelivery of High-Molecular-Weight Poly-porphyrins and HIF-1α Inhibitors for He J; Xia K; Zhao B; Song W; Zheng Y; Xiao G; Wu H; Zheng N Biomacromolecules; 2021 Nov; 22(11):4783-4793. PubMed ID: 34623134 [TBL] [Abstract][Full Text] [Related]
55. One- and two-photon activated phototoxicity of conjugated porphyrin dimers with high two-photon absorption cross sections. Dahlstedt E; Collins HA; Balaz M; Kuimova MK; Khurana M; Wilson BC; Phillips D; Anderson HL Org Biomol Chem; 2009 Mar; 7(5):897-904. PubMed ID: 19225672 [TBL] [Abstract][Full Text] [Related]
56. Potent PBS/Polysorbate-Soluble Transplatin-Derived Porphyrin-Based Photosensitizers for Photodynamic Therapy. Schneider L; Kalt M; Larocca M; Babu V; Spingler B Inorg Chem; 2021 Jul; 60(13):9416-9426. PubMed ID: 34115484 [TBL] [Abstract][Full Text] [Related]
57. The Photodynamic Anti-Tumor Effects of New PPa-CDs Conjugate with pH Sensitivity and Improved Biocompatibility. Sajjad F; Liu XY; Yan YJ; Zhou XP; Chen ZL Anticancer Agents Med Chem; 2022; 22(7):1286-1295. PubMed ID: 33992066 [TBL] [Abstract][Full Text] [Related]
58. Amphiphilic gemini pyridinium-mediated incorporation of Zn(II)meso-tetrakis(4-carboxyphenyl)porphyrin into water-soluble gold nanoparticles for photodynamic therapy. Alea-Reyes ME; Soriano J; Mora-Espí I; Rodrigues M; Russell DA; Barrios L; Pérez-García L Colloids Surf B Biointerfaces; 2017 Oct; 158():602-609. PubMed ID: 28755557 [TBL] [Abstract][Full Text] [Related]
59. Efficient induction of apoptosis in HeLa cells by a novel cationic porphycene photosensitizer. Ruiz-González R; Acedo P; Sánchez-García D; Nonell S; Cañete M; Stockert JC; Villanueva A Eur J Med Chem; 2013 May; 63():401-14. PubMed ID: 23517729 [TBL] [Abstract][Full Text] [Related]