These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 3835505)

  • 1. Chirally selective, intramolecular interaction observed in an aminoacyl adenylate anhydride.
    Lacey JC; Hall LM; Mullins DW; Watkins CL
    Orig Life Evol Biosph; 1985; 16(2):151-6. PubMed ID: 3835505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preferential hydrophobic interactions are responsible for a preference of D-amino acids in the aminoacylation of 5'-AMP with hydrophobic amino acids.
    Lacey JC; Wickramasinghe NS; Sabatini RS
    Experientia; 1992 Apr; 48(4):379-83. PubMed ID: 1582495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereoselective, nonenzymatic, intramolecular transfer of amino acids.
    Wickramasinghe NS; Staves MP; Lacey JC
    Biochemistry; 1991 Mar; 30(11):2768-72. PubMed ID: 2007115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aminoacyl-nucleotide reactions: studies related to the origin of the genetic code and protein synthesis.
    Mullins DW; Senaratne N; Lacey JC
    Orig Life; 1984; 14(1-4):597-604. PubMed ID: 6462695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereoselective formation of bis(alpha-aminoacyl) esters of 5'-AMP suggests a primitive peptide synthesizing system with a preference for L-amino acids.
    Lacey JC; Thomas RD; Staves MP; Watkins CL
    Biochim Biophys Acta; 1991 Feb; 1076(3):395-400. PubMed ID: 2001387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chirality differences in amino acid retention and release from acid-extractable pool of cultured mammalian cells.
    Wheatley DN; Slater J; Love EM; Miseta A
    Int J Biochem Cell Biol; 1996 Dec; 28(12):1349-64. PubMed ID: 9022293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chymotrypsin inhibitory conformation of dipeptides constructed by side chain-side chain hydrophobic interactions.
    Sakamoto H; Shimohigashi Y; Maeda I; Nose T; Nakashima K; Nakamura I; Ogawa T; Kawano K; Ohno M
    J Mol Recognit; 1993 Jun; 6(2):95-100. PubMed ID: 8305253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of amino acyl adenylates using the tert-butoxycarbonyl protecting group.
    Armstrong DW; Sequin R; Saburi M; Fendler JH
    J Mol Evol; 1979 Jul; 13(2):103-13. PubMed ID: 480368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-Acetyl-D- and L-esters of 5'-AMP hydrolyze at different rates.
    Wickramasinghe NS; Lacey JC
    Chirality; 1993; 5():150-3. PubMed ID: 11540505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphonate analogues of aminoacyl adenylates.
    Southgate CC; Dixon HB
    Biochem J; 1978 Nov; 175(2):461-5. PubMed ID: 743207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 13C CP/MAS of LDLL mixtures of amino acids.
    Schmidt WF; Mitchell AD; Line MJ; Reeves JB
    Solid State Nucl Magn Reson; 1993 Apr; 2(1-2):11-20. PubMed ID: 7812739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrolytic properties of phenylalanyl- and N-acetylphenylalanyl adenylate anhydrides.
    Lacey JC; Senaratne N; Mullins DW
    Orig Life Evol Biosph; 1984; 15(1):45-54. PubMed ID: 11541967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic tRNA acylation by acid and alpha-hydroxy acid analogues of amino acids.
    Owczarek A; Safro M; Wolfson AD
    Biochemistry; 2008 Jan; 47(1):301-7. PubMed ID: 18067322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yellow lupin (Lupinus luteus) aminoacyl-tRNA synthetases. Isolation and some properties of enzyme-bound valyl adenylate and seryl adenylate.
    Jakubowski H
    Biochim Biophys Acta; 1978 Dec; 521(2):584-96. PubMed ID: 32907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional characterization of the recombinant N-methyltransferase domain from the multienzyme enniatin synthetase.
    Hornbogen T; Riechers SP; Prinz B; Schultchen J; Lang C; Schmidt S; Mügge C; Turkanovic S; Süssmuth RD; Tauberger E; Zocher R
    Chembiochem; 2007 Jun; 8(9):1048-54. PubMed ID: 17471480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactions of the aminoacyl-tRNA synthetase-aminoacyl adenylate complex and amino acid derivatives. A new approach to peptide synthesis.
    Nakajima H; Kitabatake S; Tsurutani R; Tomioka I; Yamamoto K; Imahori K
    Biochim Biophys Acta; 1984 Oct; 790(2):197-9. PubMed ID: 6487635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of cation-pi interactions in biomolecular association. Design of peptides favoring interactions between cationic and aromatic amino acid side chains.
    Pletneva EV; Laederach AT; Fulton DB; Kostic NM
    J Am Chem Soc; 2001 Jul; 123(26):6232-45. PubMed ID: 11427046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aliphatic amino acid side chains associate with the "face" of the adenine ring.
    Lacey JC; Mullins DW; Watkins CL
    J Biomol Struct Dyn; 1986 Feb; 3(4):783-93. PubMed ID: 3271049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Editing of non-cognate aminoacyl adenylates by peptide synthetases.
    Pavela-Vrancic M; Dieckmann R; Döhren HV; Kleinkauf H
    Biochem J; 1999 Sep; 342 Pt 3(Pt 3):715-9. PubMed ID: 10477284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate recognition and selection by the initiation module PheATE of gramicidin S synthetase.
    Luo L; Burkart MD; Stachelhaus T; Walsh CT
    J Am Chem Soc; 2001 Nov; 123(45):11208-18. PubMed ID: 11697963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.