These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38355058)

  • 1. MGFKD: A semi-supervised multi-source domain adaptation algorithm for cross-subject EEG emotion recognition.
    Zhang R; Guo H; Xu Z; Hu Y; Chen M; Zhang L
    Brain Res Bull; 2024 Mar; 208():110901. PubMed ID: 38355058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-subject EEG emotion recognition using multi-source domain manifold feature selection.
    She Q; Shi X; Fang F; Ma Y; Zhang Y
    Comput Biol Med; 2023 Jun; 159():106860. PubMed ID: 37080005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Fast, Efficient Domain Adaptation Technique for Cross-Domain Electroencephalography(EEG)-Based Emotion Recognition.
    Chai X; Wang Q; Zhao Y; Li Y; Liu D; Liu X; Bai O
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28467371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Domain Adaptation for Class-Aware Cross-Subject and Cross-Session EEG Emotion Recognition.
    Li Z; Zhu E; Jin M; Fan C; He H; Cai T; Li J
    IEEE J Biomed Health Inform; 2022 Dec; 26(12):5964-5973. PubMed ID: 36170411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing cross-subject EEG emotion recognition through multi-source manifold metric transfer learning.
    Shi X; She Q; Fang F; Meng M; Tan T; Zhang Y
    Comput Biol Med; 2024 May; 174():108445. PubMed ID: 38603901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition.
    Chai X; Wang Q; Zhao Y; Liu X; Bai O; Li Y
    Comput Biol Med; 2016 Dec; 79():205-214. PubMed ID: 27810626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Instance-representation transfer method based on joint distribution and deep adaptation for EEG emotion recognition.
    Zhu L; Yu F; Huang A; Ying N; Zhang J
    Med Biol Eng Comput; 2024 Feb; 62(2):479-493. PubMed ID: 37914959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MS-FRAN: A Novel Multi-Source Domain Adaptation Method for EEG-Based Emotion Recognition.
    Li W; Huan W; Shao S; Hou B; Song A
    IEEE J Biomed Health Inform; 2023 Nov; 27(11):5302-5313. PubMed ID: 37665703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From Intricacy to Conciseness: A Progressive Transfer Strategy for EEG-Based Cross-Subject Emotion Recognition.
    Cai Z; Wang L; Guo M; Xu G; Guo L; Li Y
    Int J Neural Syst; 2022 Mar; 32(3):2250005. PubMed ID: 35023812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joint domain symmetry and predictive balance for cross-dataset EEG emotion recognition.
    Jiang H; Shen F; Chen L; Peng Y; Guo H; Gao H
    J Neurosci Methods; 2023 Dec; 400():109978. PubMed ID: 37806390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reducing the Calibration Effort of EEG Emotion Recognition using Domain Adaptation with Soft Labels.
    Li Z; Chen H; Jin M; Li J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5962-5965. PubMed ID: 34892476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SFT-SGAT: A semi-supervised fine-tuning self-supervised graph attention network for emotion recognition and consciousness detection.
    Qiu L; Zhong L; Li J; Feng W; Zhou C; Pan J
    Neural Netw; 2024 Dec; 180():106643. PubMed ID: 39186838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Domain Adaptive Algorithm Based on Multi-Manifold Embedded Distributed Alignment for Brain-Computer Interfaces.
    Gao Y; Liu Y; She Q; Zhang J
    IEEE J Biomed Health Inform; 2023 Jan; 27(1):296-307. PubMed ID: 36315544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DAGAM: a domain adversarial graph attention model for subject-independent EEG-based emotion recognition.
    Xu T; Dang W; Wang J; Zhou Y
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36548989
    [No Abstract]   [Full Text] [Related]  

  • 15. Multi-Source and Multi-Representation Adaptation for Cross-Domain Electroencephalography Emotion Recognition.
    Cao J; He X; Yang C; Chen S; Li Z; Wang Z
    Front Psychol; 2021; 12():809459. PubMed ID: 35095696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-source joint domain adaptation for cross-subject and cross-session emotion recognition from electroencephalography.
    Liang S; Su L; Fu Y; Wu L
    Front Hum Neurosci; 2022; 16():921346. PubMed ID: 36188181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Source Semi-Supervised Transfer Learning (DS3TL) for Cross-Subject EEG Classification.
    Jiang X; Meng L; Wang Z; Wu D
    IEEE Trans Biomed Eng; 2024 Apr; 71(4):1308-1318. PubMed ID: 37971908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-subject subspace alignment for non-stationary EEG-based emotion recognition.
    Chai X; Wang Q; Zhao Y; Liu X; Liu D; Bai O
    Technol Health Care; 2018; 26(S1):327-335. PubMed ID: 29758967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid transfer learning strategy for cross-subject EEG emotion recognition.
    Lu W; Liu H; Ma H; Tan TP; Xia L
    Front Hum Neurosci; 2023; 17():1280241. PubMed ID: 38034069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semi-supervised regression with adaptive graph learning for EEG-based emotion recognition.
    Sha T; Zhang Y; Peng Y; Kong W
    Math Biosci Eng; 2023 Apr; 20(6):11379-11402. PubMed ID: 37322987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.