These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 38355227)

  • 1. Application of valence-variable transition-metal-oxide-based nanomaterials in electrochemical analysis: A review.
    Xu H; Wang QY; Jiang M; Li SS
    Anal Chim Acta; 2024 Mar; 1295():342270. PubMed ID: 38355227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanometal Oxides with Special Surface Physicochemical Properties to Promote Electrochemical Detection of Heavy Metal Ions.
    Yang M; Li PH; Chen SH; Xiao XY; Tang XH; Lin CH; Huang XJ; Liu WQ
    Small; 2020 Jun; 16(25):e2001035. PubMed ID: 32406188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Overview of Electrochemical Sensors Based on Transition Metal Carbides and Oxides: Synthesis and Applications.
    Mashhadian A; Jian R; Tian S; Wu S; Xiong G
    Micromachines (Basel); 2023 Dec; 15(1):. PubMed ID: 38258161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal Oxides Nanomaterials and Nanocomposite-Based Electrochemical Sensors for Healthcare Applications.
    Kannan P; Maduraiveeran G
    Biosensors (Basel); 2023 May; 13(5):. PubMed ID: 37232903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unlocking the future of brain research: MOFs, TMOs, and MOFs/TMOs for electrochemical NTMs detection and analysis.
    Iftikhar T; Iftikhar N; Chi G; Qiu W; Xie Y; Liang Z; Huang C; Su L
    Talanta; 2024 Jan; 267():125146. PubMed ID: 37688896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleic acid-functionalized transition metal nanosheets for biosensing applications.
    Mo L; Li J; Liu Q; Qiu L; Tan W
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):201-211. PubMed ID: 27020066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal functionalization of two-dimensional nanomaterials for electrochemical carbon dioxide reduction.
    Wang G; Ma Y; Wang J; Lu P; Wang Y; Fan Z
    Nanoscale; 2023 Apr; 15(14):6456-6475. PubMed ID: 36951476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-Organic Framework-Derived Nanoporous Metal Oxides toward Supercapacitor Applications: Progress and Prospects.
    Salunkhe RR; Kaneti YV; Yamauchi Y
    ACS Nano; 2017 Jun; 11(6):5293-5308. PubMed ID: 28613076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fe-doping induced surface Fe
    Xu QQ; Cheng XL; Zhang BY; Zhang F; Wang X; Li SS; Zhang YX
    Anal Chim Acta; 2022 Nov; 1232():340472. PubMed ID: 36257745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-Dimensional Earth-Abundant Transition Metal Oxides Nanomaterials: Synthesis and Application in Electrochemical Oxygen Evolution Reaction.
    Elakkiya R; Maduraiveeran G
    Langmuir; 2020 May; 36(17):4728-4736. PubMed ID: 32275444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Progress on Defect-rich Transition Metal Oxides and Their Energy-Related Applications.
    Wang Y; Liang Z; Zheng H; Cao R
    Chem Asian J; 2020 Nov; 15(22):3717-3736. PubMed ID: 32970393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facet-dependent electrochemical properties of Co3O4 nanocrystals toward heavy metal ions.
    Yu XY; Meng QQ; Luo T; Jia Y; Sun B; Li QX; Liu JH; Huang XJ
    Sci Rep; 2013 Oct; 3():2886. PubMed ID: 24097175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous spinel-type transition metal oxide nanostructures as emergent electrocatalysts for oxygen reduction reactions.
    K Lebechi A; Ipadeola AK; Eid K; Abdullah AM; Ozoemena KI
    Nanoscale; 2022 Aug; 14(30):10717-10737. PubMed ID: 35861592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-situ growth of porous rod-like tungsten oxide for electrochemical determination of cupric ion.
    Gao J; He D; Zhang J; Sun B; Wang G; Suo H; Zhang L; Zhao C
    Anal Chim Acta; 2023 Oct; 1276():341645. PubMed ID: 37573124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-organic frameworks-derived MCo
    Guo Y; Huang M; Zhong H; Xu Z; Ye Q; Huang J; Ma G; Xu Z; Zeb A; Lin X
    J Colloid Interface Sci; 2023 Nov; 650(Pt B):1638-1647. PubMed ID: 37494860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constructing epitaxially grown heterointerface of metal nanoparticles and manganese dioxide anode for high-capacity and high-rate lithium-ion batteries.
    Zhang J; Huang D; Wang Y; Chang L; Yu Y; Li F; He J; Liu D; Li C
    Nanoscale; 2021 Dec; 13(47):20119-20125. PubMed ID: 34846490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanomaterials-based electrochemical sensors for the detection of natural antioxidants in food and biological samples: research progress.
    Wang H; Jiang S; Pan J; Lin J; Wang J; Li M; Xie A; Luo S
    Mikrochim Acta; 2022 Aug; 189(9):318. PubMed ID: 35931898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transition Metal Oxide Electrode Materials for Supercapacitors: A Review of Recent Developments.
    Liang R; Du Y; Xiao P; Cheng J; Yuan S; Chen Y; Yuan J; Chen J
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34068548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-Dimensional π-Conjugated Frameworks as a Model System to Unveil a Multielectron-Transfer-Based Energy Storage Mechanism.
    Sakaushi K; Nishihara H
    Acc Chem Res; 2021 Aug; 54(15):3003-3015. PubMed ID: 33998232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical preparation of nano/micron structure transition metal-based catalysts for the oxygen evolution reaction.
    Li H; Han X; Zhao W; Azhar A; Jeong S; Jeong D; Na J; Wang S; Yu J; Yamauchi Y
    Mater Horiz; 2022 Jul; 9(7):1788-1824. PubMed ID: 35485940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.