BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 38355798)

  • 21. Molecular basis for Rac2 regulation of phagocyte NADPH oxidase.
    Diebold BA; Bokoch GM
    Nat Immunol; 2001 Mar; 2(3):211-5. PubMed ID: 11224519
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assembly of the phagocyte NADPH oxidase: binding of Src homology 3 domains to proline-rich targets.
    Leto TL; Adams AG; de Mendez I
    Proc Natl Acad Sci U S A; 1994 Oct; 91(22):10650-4. PubMed ID: 7938008
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of the binding of cytosolic phospholipase A
    Solomonov Y; Hadad N; Levy R
    Mol Biol Rep; 2022 May; 49(5):3511-3518. PubMed ID: 35092565
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cell-Free NADPH Oxidase Activation Assays: A Triumph of Reductionism.
    Pick E
    Methods Mol Biol; 2020; 2087():325-411. PubMed ID: 31729001
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assembly and activation of the phagocyte NADPH oxidase. Specific interaction of the N-terminal Src homology 3 domain of p47phox with p22phox is required for activation of the NADPH oxidase.
    Sumimoto H; Hata K; Mizuki K; Ito T; Kage Y; Sakaki Y; Fukumaki Y; Nakamura M; Takeshige K
    J Biol Chem; 1996 Sep; 271(36):22152-8. PubMed ID: 8703027
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Four novel mutations in the gene encoding gp91-phox of human NADPH oxidase: consequences for oxidase assembly.
    Leusen JH; Meischl C; Eppink MH; Hilarius PM; de Boer M; Weening RS; Ahlin A; Sanders L; Goldblatt D; Skopczynska H; Bernatowska E; Palmblad J; Verhoeven AJ; van Berkel WJ; Roos D
    Blood; 2000 Jan; 95(2):666-73. PubMed ID: 10627478
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crucial role of two potential cytosolic regions of Nox2, 191TSSTKTIRRS200 and 484DESQANHFAVHHDEEKD500, on NADPH oxidase activation.
    Li XJ; Grunwald D; Mathieu J; Morel F; Stasia MJ
    J Biol Chem; 2005 Apr; 280(15):14962-73. PubMed ID: 15684431
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The cytosolic component p47(phox) is not a sine qua non participant in the activation of NADPH oxidase but is required for optimal superoxide production.
    Koshkin V; Lotan O; Pick E
    J Biol Chem; 1996 Nov; 271(48):30326-9. PubMed ID: 8939991
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The protein kinase A negatively regulates reactive oxygen species production by phosphorylating gp91phox/NOX2 in human neutrophils.
    Raad H; Mouawia H; Hassan H; El-Seblani M; Arabi-Derkawi R; Boussetta T; Gougerot-Pocidalo MA; Dang PM; El-Benna J
    Free Radic Biol Med; 2020 Nov; 160():19-27. PubMed ID: 32758662
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of the small GTPase Rac in p22phox-dependent NADPH oxidases.
    Miyano K; Sumimoto H
    Biochimie; 2007 Sep; 89(9):1133-44. PubMed ID: 17583407
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arachidonic Acid and Nitroarachidonic: Effects on NADPH Oxidase Activity.
    Gonzalez-Perilli L; Prolo C; Álvarez MN
    Adv Exp Med Biol; 2019; 1127():85-95. PubMed ID: 31140173
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative live-cell imaging and 3D modeling reveal critical functional features in the cytosolic complex of phagocyte NADPH oxidase.
    Ziegler CS; Bouchab L; Tramier M; Durand D; Fieschi F; Dupré-Crochet S; Mérola F; Nüße O; Erard M
    J Biol Chem; 2019 Mar; 294(11):3824-3836. PubMed ID: 30630949
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessment of the flavoprotein nature of the redox core of neutrophil NADPH oxidase.
    Escriou V; Laporte F; Vignais PV
    Biochem Biophys Res Commun; 1996 Feb; 219(3):930-5. PubMed ID: 8645281
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tripartite chimeras comprising functional domains derived from the cytosolic NADPH oxidase components p47phox, p67phox, and Rac1 elicit activator-independent superoxide production by phagocyte membranes: an essential role for anionic membrane phospholipids.
    Berdichevsky Y; Mizrahi A; Ugolev Y; Molshanski-Mor S; Pick E
    J Biol Chem; 2007 Jul; 282(30):22122-39. PubMed ID: 17548354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phagocyte-like NADPH oxidase [Nox2] in cellular dysfunction in models of glucolipotoxicity and diabetes.
    Kowluru A; Kowluru RA
    Biochem Pharmacol; 2014 Apr; 88(3):275-83. PubMed ID: 24462914
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electron transfer in the superoxide-generating NADPH oxidase complex reconstituted in vitro.
    Koshkin V; Lotan O; Pick E
    Biochim Biophys Acta; 1997 Apr; 1319(2-3):139-46. PubMed ID: 9131041
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rac activation induces NADPH oxidase activity in transgenic COSphox cells, and the level of superoxide production is exchange factor-dependent.
    Price MO; Atkinson SJ; Knaus UG; Dinauer MC
    J Biol Chem; 2002 May; 277(21):19220-8. PubMed ID: 11896053
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The p67(phox) activation domain regulates electron flow from NADPH to flavin in flavocytochrome b(558).
    Nisimoto Y; Motalebi S; Han CH; Lambeth JD
    J Biol Chem; 1999 Aug; 274(33):22999-3005. PubMed ID: 10438466
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assembly of the phagocyte NADPH oxidase complex: chimeric constructs derived from the cytosolic components as tools for exploring structure-function relationships.
    Mizrahi A; Berdichevsky Y; Ugolev Y; Molshanski-Mor S; Nakash Y; Dahan I; Alloul N; Gorzalczany Y; Sarfstein R; Hirshberg M; Pick E
    J Leukoc Biol; 2006 May; 79(5):881-95. PubMed ID: 16641134
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NADPH oxidase activation in neutrophils: Role of the phosphorylation of its subunits.
    Belambri SA; Rolas L; Raad H; Hurtado-Nedelec M; Dang PM; El-Benna J
    Eur J Clin Invest; 2018 Nov; 48 Suppl 2():e12951. PubMed ID: 29757466
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.