These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Machine learning algorithm for predict the in-hospital mortality in critically ill patients with congestive heart failure combined with chronic kidney disease. Li X; Wang Z; Zhao W; Shi R; Zhu Y; Pan H; Wang D Ren Fail; 2024 Dec; 46(1):2315298. PubMed ID: 38357763 [TBL] [Abstract][Full Text] [Related]
3. Machine learning-enabled prediction of prolonged length of stay in hospital after surgery for tuberculosis spondylitis patients with unbalanced data: a novel approach using explainable artificial intelligence (XAI). Yasin P; Yimit Y; Cai X; Aimaiti A; Sheng W; Mamat M; Nijiati M Eur J Med Res; 2024 Jul; 29(1):383. PubMed ID: 39054495 [TBL] [Abstract][Full Text] [Related]
4. Responsible AI for cardiovascular disease detection: Towards a privacy-preserving and interpretable model. Ferdowsi M; Hasan MM; Habib W Comput Methods Programs Biomed; 2024 Sep; 254():108289. PubMed ID: 38905988 [TBL] [Abstract][Full Text] [Related]
5. Personalized Prediction of Long-Term Renal Function Prognosis Following Nephrectomy Using Interpretable Machine Learning Algorithms: Case-Control Study. Xu L; Li C; Gao S; Zhao L; Guan C; Shen X; Zhu Z; Guo C; Zhang L; Yang C; Bu Q; Zhou B; Xu Y JMIR Med Inform; 2024 Sep; 12():e52837. PubMed ID: 39303280 [TBL] [Abstract][Full Text] [Related]
6. Explainable artificial intelligence model for identifying COVID-19 gene biomarkers. Yagin FH; Cicek İB; Alkhateeb A; Yagin B; Colak C; Azzeh M; Akbulut S Comput Biol Med; 2023 Mar; 154():106619. PubMed ID: 36738712 [TBL] [Abstract][Full Text] [Related]
7. Beyond black-box models: explainable AI for embryo ploidy prediction and patient-centric consultation. Luong TM; Ho NT; Hwu YM; Lin SY; Ho JY; Wang RS; Lee YX; Tan SJ; Lee YR; Huang YL; Hsu YC; Le NQ; Tzeng CR J Assist Reprod Genet; 2024 Sep; 41(9):2349-2358. PubMed ID: 38963605 [TBL] [Abstract][Full Text] [Related]
8. Explainable machine learning to predict long-term mortality in critically ill ventilated patients: a retrospective study in central Taiwan. Chan MC; Pai KC; Su SA; Wang MS; Wu CL; Chao WC BMC Med Inform Decis Mak; 2022 Mar; 22(1):75. PubMed ID: 35337303 [TBL] [Abstract][Full Text] [Related]
9. Explainable Machine Learning to Predict Successful Weaning Among Patients Requiring Prolonged Mechanical Ventilation: A Retrospective Cohort Study in Central Taiwan. Lin MY; Li CC; Lin PH; Wang JL; Chan MC; Wu CL; Chao WC Front Med (Lausanne); 2021; 8():663739. PubMed ID: 33968967 [No Abstract] [Full Text] [Related]
10. An Explainable Artificial Intelligence Framework for the Deterioration Risk Prediction of Hepatitis Patients. Peng J; Zou K; Zhou M; Teng Y; Zhu X; Zhang F; Xu J J Med Syst; 2021 Apr; 45(5):61. PubMed ID: 33847850 [TBL] [Abstract][Full Text] [Related]
11. Application of interpretable machine learning for early prediction of prognosis in acute kidney injury. Hu C; Tan Q; Zhang Q; Li Y; Wang F; Zou X; Peng Z Comput Struct Biotechnol J; 2022; 20():2861-2870. PubMed ID: 35765651 [TBL] [Abstract][Full Text] [Related]
12. Explainable machine learning approach to predict extubation in critically ill ventilated patients: a retrospective study in central Taiwan. Pai KC; Su SA; Chan MC; Wu CL; Chao WC BMC Anesthesiol; 2022 Nov; 22(1):351. PubMed ID: 36376785 [TBL] [Abstract][Full Text] [Related]
13. The prediction of in-hospital mortality in chronic kidney disease patients with coronary artery disease using machine learning models. Ye Z; An S; Gao Y; Xie E; Zhao X; Guo Z; Li Y; Shen N; Ren J; Zheng J Eur J Med Res; 2023 Jan; 28(1):33. PubMed ID: 36653875 [TBL] [Abstract][Full Text] [Related]
14. XGBoost-SHAP-based interpretable diagnostic framework for alzheimer's disease. Yi F; Yang H; Chen D; Qin Y; Han H; Cui J; Bai W; Ma Y; Zhang R; Yu H BMC Med Inform Decis Mak; 2023 Jul; 23(1):137. PubMed ID: 37491248 [TBL] [Abstract][Full Text] [Related]
15. Interpretable machine learning model integrating clinical and elastosonographic features to detect renal fibrosis in Asian patients with chronic kidney disease. Chen Z; Wang Y; Ying MTC; Su Z J Nephrol; 2024 May; 37(4):1027-1039. PubMed ID: 38315278 [TBL] [Abstract][Full Text] [Related]
16. Interpretable machine learning for allergic rhinitis prediction among preschool children in Urumqi, China. Wang J; Yang Y; Gong X Sci Rep; 2024 Sep; 14(1):22281. PubMed ID: 39333659 [TBL] [Abstract][Full Text] [Related]
17. Prediction and feature selection of low birth weight using machine learning algorithms. Reza TB; Salma N J Health Popul Nutr; 2024 Oct; 43(1):157. PubMed ID: 39396025 [TBL] [Abstract][Full Text] [Related]
18. Can we explain machine learning-based prediction for rupture status assessments of intracranial aneurysms? Mu N; Rezaeitaleshmahalleh M; Lyu Z; Wang M; Tang J; Strother CM; Gemmete JJ; Pandey AS; Jiang J Biomed Phys Eng Express; 2023 Mar; 9(3):. PubMed ID: 36626819 [TBL] [Abstract][Full Text] [Related]
19. Machine learning-based models for the prediction of breast cancer recurrence risk. Zuo D; Yang L; Jin Y; Qi H; Liu Y; Ren L BMC Med Inform Decis Mak; 2023 Nov; 23(1):276. PubMed ID: 38031071 [TBL] [Abstract][Full Text] [Related]
20. HGSORF: Henry Gas Solubility Optimization-based Random Forest for C-Section prediction and XAI-based cause analysis. Islam MS; Awal MA; Laboni JN; Pinki FT; Karmokar S; Mumenin KM; Al-Ahmadi S; Rahman MA; Hossain MS; Mirjalili S Comput Biol Med; 2022 Aug; 147():105671. PubMed ID: 35660327 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]