These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 38356198)
21. On the operational characteristics of the Benjamini and Hochberg False Discovery Rate procedure. Green GH; Diggle PJ Stat Appl Genet Mol Biol; 2007; 6():Article27. PubMed ID: 18052910 [TBL] [Abstract][Full Text] [Related]
22. Modifying the false discovery rate procedure based on the information theory under arbitrary correlation structure and its performance in high-dimensional genomic data. Rastaghi S; Saki A; Tabesh H BMC Bioinformatics; 2024 Feb; 25(1):57. PubMed ID: 38317067 [TBL] [Abstract][Full Text] [Related]
23. Comparative analysis of false discovery rate methods in constructing metabolic association networks. Koo I; Yao S; Zhang X; Kim S J Bioinform Comput Biol; 2014 Aug; 12(4):1450018. PubMed ID: 25152043 [TBL] [Abstract][Full Text] [Related]
24. Estimation of false discovery rate using sequential permutation p-values. Bancroft T; Du C; Nettleton D Biometrics; 2013 Mar; 69(1):1-7. PubMed ID: 23379645 [TBL] [Abstract][Full Text] [Related]
25. Control procedures and estimators of the false discovery rate and their application in low-dimensional settings: an empirical investigation. Brinster R; Köttgen A; Tayo BO; Schumacher M; Sekula P; BMC Bioinformatics; 2018 Mar; 19(1):78. PubMed ID: 29499647 [TBL] [Abstract][Full Text] [Related]
26. Expected Power for the False Discovery Rate with Independence. Glueck DH; Muller KE; Karimpour-Fard A; Hunter L Commun Stat Theory Methods; 2008 Jan; 37(12):1855-1866. PubMed ID: 20975846 [TBL] [Abstract][Full Text] [Related]
27. Power and type I error rate of false discovery rate approaches in genome-wide association studies. Yang Q; Cui J; Chazaro I; Cupples LA; Demissie S BMC Genet; 2005 Dec; 6 Suppl 1(Suppl 1):S134. PubMed ID: 16451593 [TBL] [Abstract][Full Text] [Related]
28. Accurate error control in high-dimensional association testing using conditional false discovery rates. Liley J; Wallace C Biom J; 2021 Jun; 63(5):1096-1130. PubMed ID: 33682201 [TBL] [Abstract][Full Text] [Related]
29. An adaptive single-step FDR procedure with applications to DNA microarray analysis. Iyer V; Sarkar S Biom J; 2007 Feb; 49(1):127-35. PubMed ID: 17342954 [TBL] [Abstract][Full Text] [Related]
30. Controlling false discoveries in multidimensional directional decisions, with applications to gene expression data on ordered categories. Guo W; Sarkar SK; Peddada SD Biometrics; 2010 Jun; 66(2):485-92. PubMed ID: 19645703 [TBL] [Abstract][Full Text] [Related]
32. Exploring the information in p-values for the analysis and planning of multiple-test experiments. Ruppert D; Nettleton D; Hwang JT Biometrics; 2007 Jun; 63(2):483-95. PubMed ID: 17715492 [TBL] [Abstract][Full Text] [Related]
33. Regarding Paper "Multiple testing with discrete data: Proportion of true null hypotheses and two adaptive FDR procedures" by Xiongzhi Chen, Rebecca W. Doerge, and Joseph F. Heyse. Biswas A Biom J; 2020 Dec; 62(8):2032-2033. PubMed ID: 32776342 [No Abstract] [Full Text] [Related]
35. Gaining power in multiple testing of interval hypotheses via conditionalization. Ellis JL; Pecanka J; Goeman JJ Biostatistics; 2020 Apr; 21(2):e65-e79. PubMed ID: 30247521 [TBL] [Abstract][Full Text] [Related]
36. Wavelet thresholding with bayesian false discovery rate control. Tadesse MG; Ibrahim JG; Vannucci M; Gentleman R Biometrics; 2005 Mar; 61(1):25-35. PubMed ID: 15737075 [TBL] [Abstract][Full Text] [Related]
37. A constrained polynomial regression procedure for estimating the local False Discovery Rate. Dalmasso C; Bar-Hen A; Broët P BMC Bioinformatics; 2007 Jun; 8():229. PubMed ID: 17603882 [TBL] [Abstract][Full Text] [Related]
38. Mixed directional false discovery rate control in multiple pairwise comparisons using weighted p-values. Zhao H; Peddada SD; Cui X Biom J; 2015 Jan; 57(1):144-58. PubMed ID: 25410394 [TBL] [Abstract][Full Text] [Related]
39. Re-sampling strategy to improve the estimation of number of null hypotheses in FDR control under strong correlation structures. Lu X; Perkins DL BMC Bioinformatics; 2007 May; 8():157. PubMed ID: 17509157 [TBL] [Abstract][Full Text] [Related]
40. Multiple test procedures using an upper bound of the number of true hypotheses and their use for evaluating high-dimensional EEG data. Hemmelmann C; Ziegler A; Guiard V; Weiss S; Walther M; Vollandt R J Neurosci Methods; 2008 May; 170(1):158-64. PubMed ID: 18279970 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]