BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38356233)

  • 21. Postsynthetic Functionalization of Zr
    Gao C; Bai J; He Y; Zheng Q; Ma W; Lei Z; Zhang M; Wu J; Fu F; Lin Z
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13735-13741. PubMed ID: 30892013
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Magnetic guanidyl-functionalized covalent organic framework composite: a platform for specific capture and isolation of phosphopeptides and exosomes.
    Wang B; Wang B; Feng Q; Fang X; Dai X; Yan Y; Ding CF
    Mikrochim Acta; 2022 Aug; 189(9):330. PubMed ID: 35969309
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of guanidyl-functionalized magnetic covalent organic framework for highly selective capture of endogenous phosphopeptides.
    Luo B; Yu L; He J; Li Z; Lan F; Wu Y
    J Chromatogr B Analyt Technol Biomed Life Sci; 2020 May; 1145():122080. PubMed ID: 32304948
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ti(4+)-phosphate functionalized cellulose for phosphopeptides enrichment and its application in rice phosphoproteome analysis.
    Shen F; Hu Y; Guan P; Ren X
    J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Aug; 902():108-15. PubMed ID: 22795554
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bifunctional magnetic covalent organic framework for simultaneous enrichment of phosphopeptides and glycopeptides.
    Luo B; Yan S; Zhang Y; Zhou J; Lan F; Wu Y
    Anal Chim Acta; 2021 Sep; 1177():338761. PubMed ID: 34482887
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly selective enrichment of phosphopeptides by titanium (IV) attached monodisperse-porous poly(vinylphosphonic acid-co-ethylene dimethacrylate) microspheres.
    Salimi K; Usta DD; Çelikbıçak Ö; Pınar A; Salih B; Tuncel A
    J Chromatogr A; 2017 May; 1496():9-19. PubMed ID: 28351536
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A nitrogen-doped graphene tube composite based on immobilized metal affinity chromatography for the capture of phosphopeptides.
    Wang K; Yu A; Gao Y; Chen M; Yuan H; Zhang S; Ouyang G
    Talanta; 2023 Aug; 261():124617. PubMed ID: 37187026
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A capillary column packed with a zirconium(IV)-based organic framework for enrichment of endogenous phosphopeptides.
    Lin H; Chen H; Shao X; Deng C
    Mikrochim Acta; 2018 Nov; 185(12):562. PubMed ID: 30488348
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparation of on-plate immobilized metal ion affinity chromatography platform via dopamine chemistry for highly selective isolation of phosphopeptides with matrix assisted laser desorption/ionization mass spectrometry analysis.
    Shi C; Lin Q; Deng C
    Talanta; 2015 Apr; 135():81-6. PubMed ID: 25640129
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of immobilized Sn
    Lin H; Deng C
    Proteomics; 2016 Nov; 16(21):2733-2741. PubMed ID: 27650410
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A porous graphene sorbent coated with titanium(IV)-functionalized polydopamine for selective lab-in-syringe extraction of phosphoproteins and phosphopeptides.
    Tan S; Wang J; Han Q; Liang Q; Ding M
    Mikrochim Acta; 2018 Jun; 185(7):316. PubMed ID: 29876662
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new Ti-based IMAC nanohybrid with high hydrophilicity and enhanced absorption capacity for the selective enrichment of phosphopeptides.
    Wang X; Yu J; Yang H; Shen J; Liu H; Zhou J
    J Chromatogr B Analyt Technol Biomed Life Sci; 2021 Aug; 1179():122851. PubMed ID: 34246169
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Designed synthesis of Graphene @titania @mesoporous silica hybrid material as size-exclusive metal oxide affinity chromatography platform for selective enrichment of endogenous phosphopeptides.
    Yao J; Sun N; Deng C; Zhang X
    Talanta; 2016 Apr; 150():296-301. PubMed ID: 26838411
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-Step Enrichment of N-Glycopeptides and Phosphopeptides with Novel Multifunctional Ti
    Zou X; Jie J; Yang B
    Anal Chem; 2017 Jul; 89(14):7520-7526. PubMed ID: 28609623
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Monodisperse Ti
    Wang H; Tang R; Jia S; Ma S; Gong B; Ou J
    Mikrochim Acta; 2022 Oct; 189(11):405. PubMed ID: 36197509
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly selective enrichment of phosphopeptides using Zr
    Dai J; Wang M; Liu H
    Talanta; 2017 Mar; 164():222-227. PubMed ID: 28107921
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Selective enrichment of phosphopeptides with aspartic acid based immobilized metal ion affinity chromatography materials].
    Shen H; Alimu K
    Se Pu; 2018 Apr; 36(4):334-338. PubMed ID: 30136514
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effective Enrichment of Phosphopeptides Using Magnetic Polyoxometalate-Based Metal-Organic Frameworks.
    Jiang D; Wu S; Li Y; Qi R; Liu J
    ACS Biomater Sci Eng; 2023 Oct; 9(10):5632-5638. PubMed ID: 37694584
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Specific phosphopeptide enrichment with immobilized titanium ion affinity chromatography adsorbent for phosphoproteome analysis.
    Zhou H; Ye M; Dong J; Han G; Jiang X; Wu R; Zou H
    J Proteome Res; 2008 Sep; 7(9):3957-67. PubMed ID: 18630941
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeted immobilization of titanium (IV) on magnetic mesoporous nanomaterials derived from metal-organic frameworks for high-efficiency phosphopeptide enrichment in biological samples.
    Pu C; Zhao H; Gu Q; Zheng Y; Lan M
    Mikrochim Acta; 2020 Sep; 187(10):568. PubMed ID: 32929585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.