BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38356321)

  • 61. Pancreatic Lipase Inhibitory Cyclohexapeptides from the Marine Sponge-Derived Fungus
    Tang WZ; Liu JT; Hu Q; He RJ; Guan XQ; Ge GB; Han H; Yang F; Lin HW
    J Nat Prod; 2020 Jul; 83(7):2287-2293. PubMed ID: 32662266
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Diversified Chaetoglobosins from the Marine-Derived Fungus
    Shao S; Wang X; She J; Zhang H; Pang X; Lin X; Zhou X; Liu Y; Li Y; Yang B
    Molecules; 2022 Mar; 27(6):. PubMed ID: 35335187
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Chemical constituents from the fungus Amauroderma amoiensis and their in vitro acetylcholinesterase inhibitory activities.
    Zhang SS; Ma QY; Zou XS; Dai HF; Huang SZ; Luo Y; Yu ZF; Luo HR; Zhao YX
    Planta Med; 2013 Jan; 79(1):87-91. PubMed ID: 23180341
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Cholinesterase inhibitory alkaloids from the rhizomes of Coptis chinensis.
    Cao TQ; Ngo QT; Seong SH; Youn UJ; Kim JA; Kim J; Kim JC; Woo MH; Choi JS; Min BS
    Bioorg Chem; 2018 Apr; 77():625-632. PubMed ID: 29502023
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Bisabolane-type sesquiterpenoids and bacillibactin from the marine-derived fungus
    Song YY; Liu QX; Pang XY; Chen ZY; Huang HH; Wang JF; Liu YH
    Nat Prod Res; 2023 Oct; ():1-4. PubMed ID: 37850461
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Chemical constituents from Sonneratia ovata Backer and their in vitro cytotoxicity and acetylcholinesterase inhibitory activities.
    Nguyen TH; Pham HV; Pham NK; Quach ND; Pudhom K; Hansen PE; Nguyen KP
    Bioorg Med Chem Lett; 2015 Jun; 25(11):2366-71. PubMed ID: 25933595
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Harzianumnones A and B: two hydroxyanthraquinones from the coral-derived fungus
    Shi T; Hou XM; Li ZY; Cao F; Zhang YH; Yu JY; Zhao DL; Shao CL; Wang CY
    RSC Adv; 2018 Aug; 8(49):27596-27601. PubMed ID: 35542739
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Design and synthesis of some new carboxamide and propanamide derivatives bearing phenylpyridazine as a core ring and the investigation of their inhibitory potential on in-vitro acetylcholinesterase and butyrylcholinesterase.
    Kilic B; Gulcan HO; Aksakal F; Ercetin T; Oruklu N; Umit Bagriacik E; Dogruer DS
    Bioorg Chem; 2018 Sep; 79():235-249. PubMed ID: 29775949
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Potent inhibition of acetylcholinesterase by sargachromanol I from Sargassum siliquastrum and by selected natural compounds.
    Lee JP; Kang MG; Lee JY; Oh JM; Baek SC; Leem HH; Park D; Cho ML; Kim H
    Bioorg Chem; 2019 Aug; 89():103043. PubMed ID: 31200287
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Diterpenes and Sesquiterpenes from the Marine Algicolous Fungus Trichoderma harzianum X-5.
    Song YP; Fang ST; Miao FP; Yin XL; Ji NY
    J Nat Prod; 2018 Nov; 81(11):2553-2559. PubMed ID: 30351930
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Anticholinesterase and antioxidant constituents from Gloiopeltis furcata.
    Fang Z; Jeong SY; Jung HA; Choi JS; Min BS; Woo MH
    Chem Pharm Bull (Tokyo); 2010 Sep; 58(9):1236-9. PubMed ID: 20823607
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Chemical Constituents from the Stems of Daphne holosericea (Diels) Hamaya.
    Ma QY; Chen YC; Huang SZ; Kong FD; Zhou LM; Dai HF; Hua Y; Zhao YX
    Chem Biodivers; 2016 Nov; 13(11):1469-1474. PubMed ID: 27449268
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Ormosianines A-P, Structurally Diverse Quinolizidine Alkaloids with AChE Inhibitory Effects from
    Jin Q; Qin XJ; Sun WJ; Ding X; Zhao Y; Wang CB; Tao XY; Luo XD
    J Nat Prod; 2023 Sep; 86(9):2193-2205. PubMed ID: 37589667
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Acylphloroglucinols with acetylcholinesterase inhibitory effects from the fruits of Eucalyptus robusta.
    Liu H; He XZ; Feng MY; Yuan-Zeng ; Rauwolf TJ; Shao LD; Ni W; Yan H; Porco JA; Hao XJ; Qin XJ; Liu HY
    Bioorg Chem; 2020 Oct; 103():104127. PubMed ID: 32745755
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Acetylcholinesterase inhibitory dimeric indole derivatives from the marine actinomycetes Rubrobacter radiotolerans.
    Li JL; Huang L; Liu J; Song Y; Gao J; Jung JH; Liu Y; Chen G
    Fitoterapia; 2015 Apr; 102():203-7. PubMed ID: 25655350
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Two New Sesquiterpenoids and a New Shikimic Acid Metabolite from Mangrove Sediment-Derived Fungus
    Xiao Z; Cai J; Chen T; Wang Y; Chen Y; Zhu Y; Chen C; Yang B; Zhou X; Tao H
    Mar Drugs; 2024 Feb; 22(3):. PubMed ID: 38535444
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Kinetics and molecular docking studies of loganin, morroniside and 7-O-galloyl-D-sedoheptulose derived from Corni fructus as cholinesterase and β-secretase 1 inhibitors.
    Bhakta HK; Park CH; Yokozawa T; Min BS; Jung HA; Choi JS
    Arch Pharm Res; 2016 Jun; 39(6):794-805. PubMed ID: 27106028
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Molecular docking studies and in vitro cholinesterase enzyme inhibitory activities of chemical constituents of Garcinia hombroniana.
    Jamila N; Yeong KK; Murugaiyah V; Atlas A; Khan I; Khan N; Khan SN; Khairuddean M; Osman H
    Nat Prod Res; 2015; 29(1):86-90. PubMed ID: 25219673
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Matsutakone and Matsutoic Acid, Two (Nor)steroids with Unusual Skeletons from the Edible Mushroom Tricholoma matsutake.
    Zhao ZZ; Chen HP; Wu B; Zhang L; Li ZH; Feng T; Liu JK
    J Org Chem; 2017 Aug; 82(15):7974-7979. PubMed ID: 28691489
    [TBL] [Abstract][Full Text] [Related]  

  • 80. 1,9-seco-Bicyclic Polyprenylated Acylphloroglucinols from Hypericum uralum.
    Zhang JJ; Yang XW; Liu X; Ma JZ; Liao Y; Xu G
    J Nat Prod; 2015 Dec; 78(12):3075-9. PubMed ID: 26583263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.