These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 38356626)
1. Light-driven nanomotors with reciprocating motion and high controllability based on interference techniques. Mohammadnezhad M; Saeed SR; Abdulkareem SS; Hassanzadeh A Nanoscale Adv; 2024 Feb; 6(4):1122-1126. PubMed ID: 38356626 [TBL] [Abstract][Full Text] [Related]
2. Generation and probing of 3D helical lattices with tunable helix pitch and interface. Shi Z; Preece D; Zhang C; Xiang Y; Chen Z Opt Express; 2019 Jan; 27(1):121-131. PubMed ID: 30645353 [TBL] [Abstract][Full Text] [Related]
3. Potential-well model in acoustic tweezers. Kang ST; Yeh CK IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1451-9. PubMed ID: 20529720 [TBL] [Abstract][Full Text] [Related]
4. Revisit on dynamic radiation forces induced by pulsed Gaussian beams. Wang LG; Chai HS Opt Express; 2011 Jul; 19(15):14389-402. PubMed ID: 21934801 [TBL] [Abstract][Full Text] [Related]
5. Optothermal Manipulations of Colloidal Particles and Living Cells. Lin L; Hill EH; Peng X; Zheng Y Acc Chem Res; 2018 Jun; 51(6):1465-1474. PubMed ID: 29799720 [TBL] [Abstract][Full Text] [Related]
6. Effects of non-Gaussian Brownian motion on direct force optical tweezers measurements of the electrostatic forces between pairs of colloidal particles. Raudsepp A; A K Williams M; B Hall S Eur Phys J E Soft Matter; 2016 Jul; 39(7):70. PubMed ID: 27439853 [TBL] [Abstract][Full Text] [Related]
7. Observation of asymmetrically dynamic motion of single colloidal particles in a polarized optical trap. Xie C; Dinno MA; Li YQ Opt Express; 2005 Mar; 13(5):1621-7. PubMed ID: 19495037 [TBL] [Abstract][Full Text] [Related]
8. Numerical study of the properties of optical vortex array laser tweezers. Kuo CF; Chu SC Opt Express; 2013 Nov; 21(22):26418-31. PubMed ID: 24216863 [TBL] [Abstract][Full Text] [Related]
9. Radiation forces of beams generated by Gaussian mirror resonator on a Rayleigh dielectric sphere. Tang B; Chen K; Bian L; Zhou X; Huang L; Jin Y Sci Rep; 2017 Sep; 7(1):12149. PubMed ID: 28939809 [TBL] [Abstract][Full Text] [Related]
10. Measurement of particle motion in optical tweezers embedded in a Sagnac interferometer. Galinskiy I; Isaksson O; Salgado IR; Hautefeuille M; Mehlig B; Hanstorp D Opt Express; 2015 Oct; 23(21):27071-84. PubMed ID: 26480368 [TBL] [Abstract][Full Text] [Related]
11. Optical trapping of Rayleigh particles based on four-petal Gaussian vortex beams. Liang Y; Su Y; Li J; Yang C J Opt Soc Am A Opt Image Sci Vis; 2022 Aug; 39(8):1378-1384. PubMed ID: 36215581 [TBL] [Abstract][Full Text] [Related]
12. Optically bound colloidal lattices in evanescent optical fields. Han X; Luo H; Xiao G; Jones PH Opt Lett; 2016 Nov; 41(21):4935-4938. PubMed ID: 27805654 [TBL] [Abstract][Full Text] [Related]
13. Counterpropagating self-trapped beams in optical photonic lattices. Belić M; Jović D; Prvanović S; Arsenović D; Petrović M Opt Express; 2006 Jan; 14(2):794-9. PubMed ID: 19503399 [TBL] [Abstract][Full Text] [Related]
14. Interference from multiple trapped colloids in an optical vortex beam. Lee WM; Garcés-Chávez V; Dholakia K Opt Express; 2006 Aug; 14(16):7436-46. PubMed ID: 19529110 [TBL] [Abstract][Full Text] [Related]
15. Colloidal transport in twisted lattices of optical tweezers. Stuhlmüller NCX; Fischer TM; de Las Heras D Phys Rev E; 2022 Sep; 106(3-1):034601. PubMed ID: 36266822 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam. Garcés-Chávez V; McGloin D; Melville H; Sibbett W; Dholakia K Nature; 2002 Sep; 419(6903):145-7. PubMed ID: 12226659 [TBL] [Abstract][Full Text] [Related]
17. Polarization-controllable perfect vortex beam by a dielectric metasurface. Xie J; Guo H; Zhuang S; Hu J Opt Express; 2021 Feb; 29(3):3081-3089. PubMed ID: 33770914 [TBL] [Abstract][Full Text] [Related]