These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 38357386)

  • 21. A new pragmatic design for dose escalation in phase 1 clinical trials using an adaptive continual reassessment method.
    North B; Kocher HM; Sasieni P
    BMC Cancer; 2019 Jun; 19(1):632. PubMed ID: 31242873
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Escalation strategies for combination therapy Phase I trials.
    Sweeting MJ; Mander AP
    Pharm Stat; 2012; 11(3):258-66. PubMed ID: 22411472
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Beyond the 3+3 method: expanded algorithms for dose- escalation in Phase I oncology trials of two agents.
    Braun TM; Alonzo TA
    Clin Trials; 2011 Jun; 8(3):247-59. PubMed ID: 21730075
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bayesian dose escalation with overdose and underdose control utilizing all toxicities in Phase I/II clinical trials.
    Tu J; Chen Z
    Biom J; 2024 Jan; 66(1):e2200189. PubMed ID: 38047521
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Escalation with overdose control using time to toxicity for cancer phase I clinical trials.
    Tighiouart M; Liu Y; Rogatko A
    PLoS One; 2014; 9(3):e93070. PubMed ID: 24663812
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cancer phase I trial design using drug combinations when a fraction of dose limiting toxicities is attributable to one or more agents.
    Jimenez JL; Tighiouart M; Gasparini M
    Biom J; 2019 Mar; 61(2):319-332. PubMed ID: 29808507
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flexible Bayesian methods for cancer phase I clinical trials. Dose escalation with overdose control.
    Tighiouart M; Rogatko A; Babb JS
    Stat Med; 2005 Jul; 24(14):2183-96. PubMed ID: 15909291
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dose escalation with over-dose and under-dose controls in Phase I/II clinical trials.
    Chen Z; Yuan Y; Li Z; Kutner M; Owonikoko T; Curran WJ; Khuri F; Kowalski J
    Contemp Clin Trials; 2015 Jul; 43():133-41. PubMed ID: 26012358
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modelling semi-attributable toxicity in dual-agent phase I trials with non-concurrent drug administration.
    Wheeler GM; Sweeting MJ; Mander AP; Lee SM; Cheung YK
    Stat Med; 2017 Jan; 36(2):225-241. PubMed ID: 26891942
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptive dose finding for phase I clinical trials of drugs used for chemotherapy of cancer.
    Potter DM
    Stat Med; 2002 Jul; 21(13):1805-23. PubMed ID: 12111891
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bayesian Dose Finding for Combined Drugs with Discrete and Continuous Doses.
    Huo L; Yuan Y; Yin G
    Bayesian Anal; 2012; 7(4):1035-1052. PubMed ID: 23956811
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison between continuous and discrete doses for model based designs in cancer dose finding.
    Diniz MA; Tighiouart M; Rogatko A
    PLoS One; 2019; 14(1):e0210139. PubMed ID: 30625194
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Randomized dose-escalation designs for drug combination cancer trials with immunotherapy.
    Mozgunov P; Jaki T; Paoletti X
    J Biopharm Stat; 2019; 29(2):359-377. PubMed ID: 30352007
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Brief Overview of Adaptive Designs for Phase I Cancer Trials.
    Saxena A; Rubens M; Ramamoorthy V; Zhang Z; Ahmed MA; McGranaghan P; Das S; Veledar E
    Cancers (Basel); 2022 Mar; 14(6):. PubMed ID: 35326715
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A practical Bayesian design to identify the maximum tolerated dose contour for drug combination trials.
    Zhang L; Yuan Y
    Stat Med; 2016 Nov; 35(27):4924-4936. PubMed ID: 27580928
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bayesian dose-finding designs for combination of molecularly targeted agents assuming partial stochastic ordering.
    Guo B; Li Y
    Stat Med; 2015 Feb; 34(5):859-75. PubMed ID: 25413162
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bayesian adaptive dose-escalation designs for simultaneously estimating the optimal and maximum safe dose based on safety and efficacy.
    Yeung WY; Reigner B; Beyer U; Diack C; Sabanés Bové D; Palermo G; Jaki T
    Pharm Stat; 2017 Nov; 16(6):396-413. PubMed ID: 28691311
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A randomized phase I Bayesian dose escalation design for the combination of anti-cancer drugs.
    Dejardin D; Lesaffre E; Hamberg P; Verweij J
    Pharm Stat; 2014; 13(3):196-207. PubMed ID: 24715683
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Model-guided determination of maximum tolerated dose in phase I clinical trials: evidence for increased precision.
    Mick R; Ratain MJ
    J Natl Cancer Inst; 1993 Feb; 85(3):217-23. PubMed ID: 8423626
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.