These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 38357666)

  • 1. Enhanced long-term memory and increased mushroom body plasticity in
    Young FJ; Alcalde Anton A; Melo-Flórez L; Couto A; Foley J; Monllor M; McMillan WO; Montgomery SH
    iScience; 2024 Feb; 27(2):108949. PubMed ID: 38357666
    [No Abstract]   [Full Text] [Related]  

  • 2. Adult neurogenesis does not explain the extensive post-eclosion growth of
    Alcalde Anton A; Young FJ; Melo-Flórez L; Couto A; Cross S; McMillan WO; Montgomery SH
    R Soc Open Sci; 2023 Oct; 10(10):230755. PubMed ID: 37885989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterns of host plant use do not explain mushroom body expansion in Heliconiini butterflies.
    Young FJ; Monllor M; McMillan WO; Montgomery SH
    Proc Biol Sci; 2023 Jul; 290(2003):20231155. PubMed ID: 37491961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid expansion and visual specialisation of learning and memory centres in the brains of Heliconiini butterflies.
    Couto A; Young FJ; Atzeni D; Marty S; Melo-Flórez L; Hebberecht L; Monllor M; Neal C; Cicconardi F; McMillan WO; Montgomery SH
    Nat Commun; 2023 Jul; 14(1):4024. PubMed ID: 37419890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heliconiini butterflies can learn time-dependent reward associations.
    Toure MW; Young FJ; McMillan WO; Montgomery SH
    Biol Lett; 2020 Sep; 16(9):20200424. PubMed ID: 32961092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. No evidence of social learning in a socially roosting butterfly in an associative learning task.
    Moura PA; Cardoso MZ; Montgomery SH
    Biol Lett; 2023 May; 19(5):20220490. PubMed ID: 37194257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain composition in Heliconius butterflies, posteclosion growth and experience-dependent neuropil plasticity.
    Montgomery SH; Merrill RM; Ott SR
    J Comp Neurol; 2016 Jun; 524(9):1747-69. PubMed ID: 26918905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly conserved gene order and numerous novel repetitive elements in genomic regions linked to wing pattern variation in Heliconius butterflies.
    Papa R; Morrison CM; Walters JR; Counterman BA; Chen R; Halder G; Ferguson L; Chamberlain N; Ffrench-Constant R; Kapan DD; Jiggins CD; Reed RD; McMillan WO
    BMC Genomics; 2008 Jul; 9():345. PubMed ID: 18647405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasticity and genetic effects contribute to different axes of neural divergence in a community of mimetic Heliconius butterflies.
    Hebberecht L; Wainwright JB; Thompson C; Kershenbaum S; McMillan WO; Montgomery SH
    J Evol Biol; 2023 Aug; 36(8):1116-1132. PubMed ID: 37341138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term spatial memory across large spatial scales in Heliconius butterflies.
    Moura PA; Young FJ; Monllor M; Cardoso MZ; Montgomery SH
    Curr Biol; 2023 Aug; 33(15):R797-R798. PubMed ID: 37552941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Transcriptomics Provides Insights into Reticulate and Adaptive Evolution of a Butterfly Radiation.
    Zhang W; Leon-Ricardo BX; van Schooten B; Van Belleghem SM; Counterman BA; McMillan WO; Kronforst MR; Papa R
    Genome Biol Evol; 2019 Oct; 11(10):2963-2975. PubMed ID: 31518398
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Hammer TJ; Dickerson JC; McMillan WO; Fierer N
    Appl Environ Microbiol; 2020 Nov; 86(24):. PubMed ID: 33008816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behavioral and life-history evidence for interspecific competition in the larvae of two heliconian butterflies.
    Millan C; Borges SS; Rodrigues D; Moreira GR
    Naturwissenschaften; 2013 Oct; 100(10):901-11. PubMed ID: 23949306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies.
    Briscoe AD; Bybee SM; Bernard GD; Yuan F; Sison-Mangus MP; Reed RD; Warren AD; Llorente-Bousquets J; Chiao CC
    Proc Natl Acad Sci U S A; 2010 Feb; 107(8):3628-33. PubMed ID: 20133601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A modified method to analyse cell proliferation using EdU labelling in large insect brains.
    Anton AA; Farnworth MS; Hebberecht L; Harrison CJ; Montgomery SH
    PLoS One; 2023; 18(10):e0292009. PubMed ID: 37796816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain size: a global or induced cost of learning?
    Snell-Rood EC; Papaj DR; Gronenberg W
    Brain Behav Evol; 2009; 73(2):111-28. PubMed ID: 19390176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synteny-Based Genome Assembly for 16 Species of Heliconius Butterflies, and an Assessment of Structural Variation across the Genus.
    Seixas FA; Edelman NB; Mallet J
    Genome Biol Evol; 2021 Jul; 13(7):. PubMed ID: 33792688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EST analysis of male accessory glands from Heliconius butterflies with divergent mating systems.
    Walters JR; Harrison RG
    BMC Genomics; 2008 Dec; 9():592. PubMed ID: 19063743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined EST and proteomic analysis identifies rapidly evolving seminal fluid proteins in Heliconius butterflies.
    Walters JR; Harrison RG
    Mol Biol Evol; 2010 Sep; 27(9):2000-13. PubMed ID: 20375075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conserved microbiota among young
    van Schooten B; Godoy-Vitorino F; McMillan WO; Papa R
    PeerJ; 2018; 6():e5502. PubMed ID: 30310733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.