These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38357814)

  • 1. Electronic and optical properties of core-shell InAlN nanorods: a comparative study
    Pela RR; Hsiao CL; Hultman L; Birch J; Gueorguiev GK
    Phys Chem Chem Phys; 2024 Feb; 26(9):7504-7514. PubMed ID: 38357814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DFT-1/2 and shell DFT-1/2 methods: electronic structure calculation for semiconductors at LDA complexity.
    Mao GQ; Yan ZY; Xue KH; Ai Z; Yang S; Cui H; Yuan JH; Ren TL; Miao X
    J Phys Condens Matter; 2022 Aug; 34(40):. PubMed ID: 35856860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid density functional theory modeling of Ca, Zn, and Al ion batteries using the Chevrel phase Mo
    Juran TR; Smeu M
    Phys Chem Chem Phys; 2017 Aug; 19(31):20684-20690. PubMed ID: 28737809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical analysis of the performance of a variety of first-principles schemes for accurate prediction of binary semiconductor band gaps.
    Abedi S; Tarighi Ahmadpour M; Baninajarian S; Kahnouji H; Hashemifar SJ; Han ZK; Levchenko SV
    J Chem Phys; 2023 May; 158(18):. PubMed ID: 37158329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An optimally tuned range-separated hybrid starting point for ab initio GW plus Bethe-Salpeter equation calculations of molecules.
    McKeon CA; Hamed SM; Bruneval F; Neaton JB
    J Chem Phys; 2022 Aug; 157(7):074103. PubMed ID: 35987597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab Initio Many-Body Perturbation Theory Calculations of the Electronic and Optical Properties of Cyclometalated Ir(III) Complexes.
    Cazzaniga M; Cargnoni F; Penconi M; Bossi A; Ceresoli D
    J Chem Theory Comput; 2020 Feb; 16(2):1188-1199. PubMed ID: 31860292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GW-BSE Calculations of Electronic Band Gap and Optical Spectrum of ZnFe
    Ulpe AC; Bredow T
    Chemphyschem; 2020 Mar; 21(6):546-551. PubMed ID: 31916657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the Heyd-Scuseria-Ernzerhof density functional parameter space.
    Moussa JE; Schultz PA; Chelikowsky JR
    J Chem Phys; 2012 May; 136(20):204117. PubMed ID: 22667550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Band Gaps and Optical Spectra of Chlorographene, Fluorographene and Graphane from G0W0, GW0 and GW Calculations on Top of PBE and HSE06 Orbitals.
    Karlický F; Otyepka M
    J Chem Theory Comput; 2013 Sep; 9(9):4155-64. PubMed ID: 26592406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quasiparticle band structures and optical properties of magnesium fluoride.
    Yi Z; Jia R
    J Phys Condens Matter; 2012 Feb; 24(8):085602. PubMed ID: 22277330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical and Electronic Properties of Organic NIR-II Fluorophores by Time-Dependent Density Functional Theory and Many-Body Perturbation Theory:
    Pham NNT; Han SH; Park JS; Lee SG
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining localized orbital scaling correction and Bethe-Salpeter equation for accurate excitation energies.
    Li J; Jin Y; Su NQ; Yang W
    J Chem Phys; 2022 Apr; 156(15):154101. PubMed ID: 35459294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A first-principles Quantum Monte Carlo study of two-dimensional (2D) GaSe.
    Wines D; Saritas K; Ataca C
    J Chem Phys; 2020 Oct; 153(15):154704. PubMed ID: 33092365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of the
    Hashemi Z; Leppert L
    J Phys Chem A; 2021 Mar; 125(10):2163-2172. PubMed ID: 33656894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dataset for electronic and optical properties of Y
    Dimakis N; Rodriguez EB; Ackaah-Gyasi KN; Pokhrel M
    Data Brief; 2022 Dec; 45():108671. PubMed ID: 36426012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic and optical properties of pure and modified diamondoids studied by many-body perturbation theory and time-dependent density functional theory.
    Demján T; Vörös M; Palummo M; Gali A
    J Chem Phys; 2014 Aug; 141(6):064308. PubMed ID: 25134572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The electronic and optical properties of the sulvanite compounds: a many-body perturbation and time-dependent density functional theory study.
    Espinosa-García WF; Pérez-Walton S; Osorio-Guillén JM; Moyses Araujo C
    J Phys Condens Matter; 2018 Jan; 30(3):035502. PubMed ID: 29182517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is the Bethe-Salpeter Formalism Accurate for Excitation Energies? Comparisons with TD-DFT, CASPT2, and EOM-CCSD.
    Jacquemin D; Duchemin I; Blase X
    J Phys Chem Lett; 2017 Apr; 8(7):1524-1529. PubMed ID: 28301726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing LDA-1/2, HSE03, HSE06 and G₀W₀ approaches for band gap calculations of alloys.
    Pela RR; Marques M; Teles LK
    J Phys Condens Matter; 2015 Dec; 27(50):505502. PubMed ID: 26609566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A GW+Bethe-Salpeter calculation on photoabsorption spectra of (CdSe)3 and (CdSe)6 clusters.
    Noguchi Y; Sugino O; Nagaoka M; Ishii S; Ohno K
    J Chem Phys; 2012 Jul; 137(2):024306. PubMed ID: 22803535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.