These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38357879)

  • 21. Wearable exoskeleton control modes selected during overground walking affect muscle synergies in adults with a chronic incomplete spinal cord injury.
    Escalona MJ; Bourbonnais D; Goyette M; Duclos C; Gagnon DH
    Spinal Cord Ser Cases; 2020 Apr; 6(1):26. PubMed ID: 32332703
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Balance Control and Energetics of Powered Exoskeleton-Assisted Sit-to-Stand Movement in Individuals With Paraplegic Spinal Cord Injury.
    Mao HF; Huang HP; Lu TW; Wang TM; Wu CH; Hu JS
    Arch Phys Med Rehabil; 2018 Oct; 99(10):1982-1990. PubMed ID: 29709521
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Perspectives of people with spinal cord injury learning to walk using a powered exoskeleton.
    Manns PJ; Hurd C; Yang JF
    J Neuroeng Rehabil; 2019 Jul; 16(1):94. PubMed ID: 31324256
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exoskeletons for Personal Use After Spinal Cord Injury.
    Kandilakis C; Sasso-Lance E
    Arch Phys Med Rehabil; 2021 Feb; 102(2):331-337. PubMed ID: 31228407
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cardiopulmonary function after robotic exoskeleton-assisted over-ground walking training of a patient with an incomplete spinal cord injury: Case report.
    Jang YC; Park HK; Han JY; Choi IS; Song MK
    Medicine (Baltimore); 2019 Dec; 98(50):e18286. PubMed ID: 31852105
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exoskeletons' design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury.
    Lajeunesse V; Vincent C; Routhier F; Careau E; Michaud F
    Disabil Rehabil Assist Technol; 2016 Oct; 11(7):535-47. PubMed ID: 26340538
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of Wearable Powered Exoskeletal Training on Functional Mobility, Physiological Health and Quality of Life in Non-ambulatory Spinal Cord Injury Patients.
    Kim HS; Park JH; Lee HS; Lee JY; Jung JW; Park SB; Hyun DJ; Park S; Yoon J; Lim H; Choi YY; Kim MJ
    J Korean Med Sci; 2021 Mar; 36(12):e80. PubMed ID: 33783145
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level.
    Grasmücke D; Zieriacks A; Jansen O; Fisahn C; Sczesny-Kaiser M; Wessling M; Meindl RC; Schildhauer TA; Aach M
    Neurosurg Focus; 2017 May; 42(5):E15. PubMed ID: 28463613
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experience of Robotic Exoskeleton Use at Four Spinal Cord Injury Model Systems Centers.
    Heinemann AW; Jayaraman A; Mummidisetty CK; Spraggins J; Pinto D; Charlifue S; Tefertiller C; Taylor HB; Chang SH; Stampas A; Furbish CL; Field-Fote EC
    J Neurol Phys Ther; 2018 Oct; 42(4):256-267. PubMed ID: 30199518
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exoskeleton for post-stroke recovery of ambulation (ExStRA): study protocol for a mixed-methods study investigating the efficacy and acceptance of an exoskeleton-based physical therapy program during stroke inpatient rehabilitation.
    Louie DR; Mortenson WB; Durocher M; Teasell R; Yao J; Eng JJ
    BMC Neurol; 2020 Jan; 20(1):35. PubMed ID: 31992219
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The utilization of an overground robotic exoskeleton for gait training during inpatient rehabilitation-single-center retrospective findings.
    Swank C; Trammell M; Bennett M; Ochoa C; Callender L; Sikka S; Driver S
    Int J Rehabil Res; 2020 Sep; 43(3):206-213. PubMed ID: 32282573
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wearable robotic exoskeleton for gait reconstruction in patients with spinal cord injury: A literature review.
    Tan K; Koyama S; Sakurai H; Teranishi T; Kanada Y; Tanabe S
    J Orthop Translat; 2021 May; 28():55-64. PubMed ID: 33717982
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Feasibility, safety, and functional outcomes using the neurological controlled Hybrid Assistive Limb exoskeleton (HAL®) following acute incomplete and complete spinal cord injury - Results of 50 patients.
    Aach M; Schildhauer TA; Zieriacks A; Jansen O; Weßling M; Brinkemper A; Grasmücke D
    J Spinal Cord Med; 2023 Jul; 46(4):574-581. PubMed ID: 37083596
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accelerometry-enabled measurement of walking performance with a robotic exoskeleton: a pilot study.
    Lonini L; Shawen N; Scanlan K; Rymer WZ; Kording KP; Jayaraman A
    J Neuroeng Rehabil; 2016 Mar; 13():35. PubMed ID: 27037035
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Robotic Rehabilitation and Spinal Cord Injury: a Narrative Review.
    Mekki M; Delgado AD; Fry A; Putrino D; Huang V
    Neurotherapeutics; 2018 Jul; 15(3):604-617. PubMed ID: 29987763
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Walking improvement in chronic incomplete spinal cord injury with exoskeleton robotic training (WISE): a randomized controlled trial.
    Edwards DJ; Forrest G; Cortes M; Weightman MM; Sadowsky C; Chang SH; Furman K; Bialek A; Prokup S; Carlow J; VanHiel L; Kemp L; Musick D; Campo M; Jayaraman A
    Spinal Cord; 2022 Jun; 60(6):522-532. PubMed ID: 35094007
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lower extremity robotic exoskeleton training: Case studies for complete spinal cord injury walking.
    Lemaire ED; Smith AJ; Herbert-Copley A; Sreenivasan V
    NeuroRehabilitation; 2017; 41(1):97-103. PubMed ID: 28505991
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Users with spinal cord injury experience of robotic Locomotor exoskeletons: a qualitative study of the benefits, limitations, and recommendations.
    Kinnett-Hopkins D; Mummidisetty CK; Ehrlich-Jones L; Crown D; Bond RA; Applebaum MH; Jayaraman A; Furbish C; Forrest G; Field-Fote E; Heinemann AW
    J Neuroeng Rehabil; 2020 Sep; 17(1):124. PubMed ID: 32917287
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Capturing the psychosocial impacts of falls from the perspectives of wheelchair users with spinal cord injury through photo-elicitation.
    Singh H; Scovil CY; Yoshida K; Oosman S; Kaiser A; Jaglal SB; Musselman KE
    Disabil Rehabil; 2021 Sep; 43(19):2680-2689. PubMed ID: 31906734
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Results of the first interim analysis of the RAPPER II trial in patients with spinal cord injury: ambulation and functional exercise programs in the REX powered walking aid.
    Birch N; Graham J; Priestley T; Heywood C; Sakel M; Gall A; Nunn A; Signal N
    J Neuroeng Rehabil; 2017 Jun; 14(1):60. PubMed ID: 28629390
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.