These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38357997)

  • 1. Dynamic dissolution of Cm
    Chu ZQ; Zhu RY; Su J
    Phys Chem Chem Phys; 2024 Feb; 26(9):7545-7553. PubMed ID: 38357997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ab initio mechanism revealing for tricalcium silicate dissolution.
    Li Y; Pan H; Liu Q; Ming X; Li Z
    Nat Commun; 2022 Mar; 13(1):1253. PubMed ID: 35273192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical insights into the coordination structures, stabilities and electronic spectra of Cm
    Chu ZQ; Zhu RY; Su J
    J Colloid Interface Sci; 2023 Jun; 640():727-736. PubMed ID: 36898179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Bacillus subtilis cell walls and EDTA on calcite dissolution rates and crystal surface features.
    Friis AK; Davis TA; Figueira MM; Paquette J; Mucci A
    Environ Sci Technol; 2003 Jun; 37(11):2376-82. PubMed ID: 12831020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissolution and Precipitation Dynamics at Environmental Mineral Interfaces Imaged by In Situ Atomic Force Microscopy.
    Wang L; Putnis CV
    Acc Chem Res; 2020 Jun; 53(6):1196-1205. PubMed ID: 32441501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomistic simulations of calcium uranyl(VI) carbonate adsorption on calcite and stepped-calcite surfaces.
    Doudou S; Vaughan DJ; Livens FR; Burton NA
    Environ Sci Technol; 2012 Jul; 46(14):7587-94. PubMed ID: 22642750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Americium and Curium Complexes with the Protein Lanmodulin: A Potential Macromolecular Mechanism for Actinide Mobility in the Environment.
    Deblonde GJ; Mattocks JA; Wang H; Gale EM; Kersting AB; Zavarin M; Cotruvo JA
    J Am Chem Soc; 2021 Sep; 143(38):15769-15783. PubMed ID: 34542285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics and mechanisms of the interaction between the calcite (10.4) surface and Cu
    Tang H; Xian H; He H; Wei J; Liu H; Zhu J; Zhu R
    Sci Total Environ; 2019 Jun; 668():602-616. PubMed ID: 30856570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and Surface Complexation at the Calcite(104)-Water Interface.
    Heberling F; Klačić T; Raiteri P; Gale JD; Eng PJ; Stubbs JE; Gil-Díaz T; Begović T; Lützenkirchen J
    Environ Sci Technol; 2021 Sep; 55(18):12403-12413. PubMed ID: 34478280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab initio Kinetic Monte Carlo simulations of dissolution at the NaCl-water interface.
    Chen JC; Reischl B; Spijker P; Holmberg N; Laasonen K; Foster AS
    Phys Chem Chem Phys; 2014 Nov; 16(41):22545-54. PubMed ID: 25227553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Surface Features on the Initial Dissolution of CH
    Intan NN; Pfaendtner J
    ACS Nano; 2023 Nov; 17(22):22371-22387. PubMed ID: 37943082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Further insights in the ability of classical nonadditive potentials to model actinide ion-water interactions.
    Réal F; Trumm M; Schimmelpfennig B; Masella M; Vallet V
    J Comput Chem; 2013 Apr; 34(9):707-19. PubMed ID: 23233426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic understanding of Curium(III) sorption on natural K-feldspar surfaces.
    Demnitz M; Schymura S; Neumann J; Schmidt M; Schäfer T; Stumpf T; Müller K
    Sci Total Environ; 2022 Oct; 843():156920. PubMed ID: 35753478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitizing curium luminescence through an antenna protein to investigate biological actinide transport mechanisms.
    Sturzbecher-Hoehne M; Goujon C; Deblonde GJ; Mason AB; Abergel RJ
    J Am Chem Soc; 2013 Feb; 135(7):2676-83. PubMed ID: 23363005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interface dissolution kinetics and porosity formation of calcite and dolomite (110) and (104) planes: An implication to the stability of geologic carbon sequestration.
    Zhu G; Wei Z; Li W; Yang X; Cao S; Wu X; Li Y
    J Colloid Interface Sci; 2023 Nov; 650(Pt B):1003-1012. PubMed ID: 37459724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of ethanol and water on calcite: dependence on surface geometry and effect on surface behavior.
    Keller KS; Olsson MH; Yang M; Stipp SL
    Langmuir; 2015 Apr; 31(13):3847-53. PubMed ID: 25790337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Actinide geochemistry: from the molecular level to the real system.
    Geckeis H; Rabung T
    J Contam Hydrol; 2008 Dec; 102(3-4):187-95. PubMed ID: 19008017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct visualization of single ions in the Stern layer of calcite.
    Ricci M; Spijker P; Stellacci F; Molinari JF; Voïtchovsky K
    Langmuir; 2013 Feb; 29(7):2207-16. PubMed ID: 23339738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eu3+ uptake by calcite: preliminary results from coprecipitation experiments and observations with surface-sensitive techniques.
    Stipp SL; Lakshtanov LZ; Jensen JT; Baker JA
    J Contam Hydrol; 2003 Mar; 61(1-4):33-43. PubMed ID: 12598092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of chloride salt erosion on the adhesion of asphalt-aggregate interfaces considering mineral anisotropy: insights from molecular dynamics.
    Sun E; Zhao Y; Wang G
    J Mol Model; 2024 Feb; 30(3):64. PubMed ID: 38329614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.