BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38358485)

  • 1. Comparison of the wastewater treatment performance of continuously and discontinuously mixed high-rate algal ponds at Kingston on Murray.
    Butterworth S; Fallowfield H
    Water Sci Technol; 2024 Feb; 89(3):505-512. PubMed ID: 38358485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased pond depth improves algal productivity and nutrient removal in wastewater treatment high rate algal ponds.
    Sutherland DL; Turnbull MH; Craggs RJ
    Water Res; 2014 Apr; 53():271-81. PubMed ID: 24530547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Case study on the effect continuous CO
    Young P; Taylor MJ; Buchanan N; Lewis J; Fallowfield HJ
    J Environ Manage; 2019 Dec; 251():109614. PubMed ID: 31563600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microalgae recycling improves biomass recovery from wastewater treatment high rate algal ponds.
    Gutiérrez R; Ferrer I; González-Molina A; Salvadó H; García J; Uggetti E
    Water Res; 2016 Dec; 106():539-549. PubMed ID: 27771604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Algal biomass production and wastewater treatment in high rate algal ponds receiving disinfected effluent.
    Santiago AF; Calijuri ML; Assemany PP; Calijuri Mdo C; dos Reis AJ
    Environ Technol; 2013; 34(13-16):1877-85. PubMed ID: 24350441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the treatment performance of a high rate algal pond and a facultative waste stabilisation pond operating in rural South Australia.
    Buchanan N; Young P; Cromar NJ; Fallowfield HJ
    Water Sci Technol; 2018 Aug; 78(1-2):3-11. PubMed ID: 30101783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wastewater microalgal production, nutrient removal and physiological adaptation in response to changes in mixing frequency.
    Sutherland DL; Turnbull MH; Broady PA; Craggs RJ
    Water Res; 2014 Sep; 61():130-40. PubMed ID: 24911561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation of indicator organisms in wastewater treated by a high rate algal pond system.
    Young P; Buchanan N; Fallowfield HJ
    J Appl Microbiol; 2016 Aug; 121(2):577-86. PubMed ID: 27187055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes of viral and prokaryote abundances in a high rate algal pond using flow cytometry detection.
    Hisee AR; Hisee M; McKerral JC; Rosenbauer SR; Paterson JS; Mitchell JG; Fallowfield HJ
    Water Sci Technol; 2020 Sep; 82(6):1062-1069. PubMed ID: 33055396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental drivers that influence microalgal species in fullscale wastewater treatment high rate algal ponds.
    Sutherland DL; Turnbull MH; Craggs RJ
    Water Res; 2017 Nov; 124():504-512. PubMed ID: 28802135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wastewater treatment and algal production in high rate algal ponds with carbon dioxide addition.
    Park JB; Craggs RJ
    Water Sci Technol; 2010; 61(3):633-9. PubMed ID: 20150699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Water Depth on Microalgal Production, Biomass Harvest, and Energy Consumption in High Rate Algal Pond Using Municipal Wastewater.
    Kim BH; Choi JE; Cho K; Kang Z; Ramanan R; Moon DG; Kim HS
    J Microbiol Biotechnol; 2018 Apr; 28(4):630-637. PubMed ID: 29429325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wastewater treatment high rate algal ponds (WWT HRAP) for low-cost biofuel production.
    Mehrabadi A; Craggs R; Farid MM
    Bioresour Technol; 2015 May; 184():202-214. PubMed ID: 25465780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Algal production in wastewater treatment high rate algal ponds for potential biofuel use.
    Park JB; Craggs RJ
    Water Sci Technol; 2011; 63(10):2403-10. PubMed ID: 21977667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance evaluation of novel attached-growth high rate algal pond system with additional artificial illumination for wastewater treatment and nutrient recovery.
    Jinda K; Koottatep T; Chaiwong C; Polprasert C
    Water Sci Technol; 2020 Jul; 82(1):97-106. PubMed ID: 32910795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing microalgal photosynthesis and productivity in wastewater treatment high rate algal ponds for biofuel production.
    Sutherland DL; Howard-Williams C; Turnbull MH; Broady PA; Craggs RJ
    Bioresour Technol; 2015 May; 184():222-229. PubMed ID: 25453429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pollution prevention and waste phycoremediation by algal-based wastewater treatment technologies: The applications of high-rate algal ponds (HRAPs) and algal turf scrubber (ATS).
    Leong YK; Huang CY; Chang JS
    J Environ Manage; 2021 Oct; 296():113193. PubMed ID: 34237671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of two different nutrient loads on microalgal production, nutrient removal and photosynthetic efficiency in pilot-scale wastewater high rate algal ponds.
    Sutherland DL; Turnbull MH; Broady PA; Craggs RJ
    Water Res; 2014 Dec; 66():53-62. PubMed ID: 25189477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation and modelling of high rate algal ponds utilising secondary effluent at Western Water, Bacchus Marsh Recycled Water Plant.
    Wrede D; Hussainy SU; Rajendram W; Gray S
    Water Sci Technol; 2018 Aug; 78(1-2):20-30. PubMed ID: 30101785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Life cycle assessment of high rate algal ponds for wastewater treatment and resource recovery.
    Arashiro LT; Montero N; Ferrer I; Acién FG; Gómez C; Garfí M
    Sci Total Environ; 2018 May; 622-623():1118-1130. PubMed ID: 29890581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.