These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38358630)

  • 1. Catalytic hydrolysis of monochlorodifluoromethane over ZnO/ZrO
    Zheng Z; Mao J; Tan X; Jia L; Liu T
    Environ Sci Pollut Res Int; 2024 Mar; 31(13):19348-19362. PubMed ID: 38358630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equivalence of difluorodichloromethane (CFC-12) hydrolysis catalyzed by solid acid(base) MoO
    Li Z; Tan X; Ren G; Chang Y; Jia L; Duan K; Liu T
    RSC Adv; 2020 Sep; 10(56):33662-33674. PubMed ID: 35519043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface characterization of metal oxides-supported activated carbon fiber catalysts for simultaneous catalytic hydrolysis of carbonyl sulfide and carbon disulfide.
    Li K; Wang C; Ning P; Li K; Sun X; Song X; Mei Y
    J Environ Sci (China); 2020 Oct; 96():44-54. PubMed ID: 32819698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-temperature hydrodechlorination of ozone-depleting chlorodifluoromethane (HCFC-22) on supported Pd and Ni catalysts.
    Ha JM; Kim D; Kim J; Ahn BS; Kim Y; Kang JW
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(9):989-96. PubMed ID: 21847789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on the performance of NiO/Zn
    Chang S; Mao W; Na W; Gao W; Qu G; Wang H
    RSC Adv; 2020 Nov; 10(70):42790-42798. PubMed ID: 35514920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic ketonization of palmitic acid over a series of transition metal oxides supported on zirconia oxide-based catalysts.
    Aleem SA; Asikin-Mijan N; Hussain AS; Voon CH; Dolfi A; Sivasangar S; Taufiq-Yap YH
    RSC Adv; 2021 Sep; 11(51):31972-31982. PubMed ID: 35495522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study of Mn/CeO2, Mn/ZrO2 and Mn/Ce-ZrO2 for low temperature selective catalytic reduction of NO with NH3 in the presence of SO2 and H2O.
    Shen B; Zhang X; Ma H; Yao Y; Liu T
    J Environ Sci (China); 2013 Apr; 25(4):791-800. PubMed ID: 23923789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual active sites over Cu-ZnO-ZrO
    Sun X; Jin Y; Cheng Z; Lan G; Wang X; Qiu Y; Wang Y; Liu H; Li Y
    J Environ Sci (China); 2023 Sep; 131():162-172. PubMed ID: 37225377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the Mn oxidation state and lattice oxygen in Mn-based TiO2 catalysts on the low-temperature selective catalytic reduction of NO by NH3.
    Lee SM; Park KH; Kim SS; Kwon DW; Hong SC
    J Air Waste Manag Assoc; 2012 Sep; 62(9):1085-92. PubMed ID: 23019822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Low-temperature catalytic reduction of NO over Fe-MnOx-CeO2/ZrO2 catalyst].
    Liu R; Yang ZQ
    Huan Jing Ke Xue; 2012 Jun; 33(6):1964-70. PubMed ID: 22946183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of manganese-based Zr-Fe polymeric pillared interlayered montmorillonite for low-temperature selective catalytic reduction of NO
    Han Z; Yu Q; Xie H; Liu K; Qin Q; Xue Z
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32122-32129. PubMed ID: 30218339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of manganese content and calcination temperature on Mn/Zr-PILM catalyst for low-temperature selective catalytic reduction of NO
    Han Z; Yu Q; Teng Z; Wu B; Xue Z; Qin Q
    Environ Sci Pollut Res Int; 2019 May; 26(13):12920-12927. PubMed ID: 30888621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insight into the promoting effect of support pretreatment with sulfate acid on selective catalytic reduction performance of CeO
    Han Z; Li X; Wang X; Gao Y; Yang S; Song L; Dong J; Pan X
    J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2718-2729. PubMed ID: 34785048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and catalytic properties of ZrO2-Al2O3 composite oxide supported nickel catalysts for methane reforming with carbon dioxide.
    Hao ZP; Hu C; Jiang Z; Lu GQ
    J Environ Sci (China); 2004; 16(2):316-20. PubMed ID: 15137662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic activity of Fe/ZrO₂ nanoparticles for dimethyl sulfide oxidation.
    Soni KC; Chandra Shekar S; Singh B; Gopi T
    J Colloid Interface Sci; 2015 May; 446():226-36. PubMed ID: 25678157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The deactivation of a ZnO doped ZrO
    Zhang M; Tan X; Zhang T; Han Z; Jiang H
    RSC Adv; 2018 Sep; 8(59):34069-34077. PubMed ID: 35548838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-situ preparation of sulfonated carbonaceous copper oxide-zirconia nanocomposite as a novel and recyclable solid acid catalyst for reduction of 4-nitrophenol.
    Farrag M
    Sci Rep; 2023 Jun; 13(1):10123. PubMed ID: 37349346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrothermal Stability of CeO
    Liu J; Shi X; Shan Y; Yan Z; Shan W; Yu Y; He H
    Environ Sci Technol; 2018 Oct; 52(20):11769-11777. PubMed ID: 30207708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SO
    Wang S; Pu J; Wu J; Liu H; Xu H; Li X; Wang H
    ACS Omega; 2020 Nov; 5(46):30139-30147. PubMed ID: 33251448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation of acetone over Co-based catalysts derived from hierarchical layer hydrotalcite: Influence of Co/Al molar ratios and calcination temperatures.
    Zhao Q; Ge Y; Fu K; Ji N; Song C; Liu Q
    Chemosphere; 2018 Aug; 204():257-266. PubMed ID: 29660539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.