These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38358755)

  • 1. Excitonic Effects of the Excited-State Photocatalytic Reaction at the Molecule/Metal Oxide Interface.
    Wang L; Liu X; Wan L; Gao Y; Wang X; Liu J; Tan S; Guo Q; Zhao W; Hu W; Li Q; Yang J
    J Phys Chem Lett; 2024 Feb; 15(7):2096-2104. PubMed ID: 38358755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitonic Interfacial Proton-Coupled Electron Transfer Mechanism in the Photocatalytic Oxidation of Methanol to Formaldehyde on TiO
    Migani A; Blancafort L
    J Am Chem Soc; 2016 Dec; 138(49):16165-16173. PubMed ID: 27960348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying Photocatalytic Active Sites of C
    Wang X; Wan L; Wang Z; Liu X; Gao Y; Wang L; Liu J; Guo Q; Hu W; Yang J
    J Phys Chem Lett; 2022 Jul; 13(28):6532-6540. PubMed ID: 35829739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the character of excited states in TiO
    Valero R; Morales-García Á; Illas F
    Phys Chem Chem Phys; 2020 Feb; 22(5):3017-3029. PubMed ID: 31957776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying the role of excess electrons and holes for initiating the photocatalytic dissociation of methanol on a TiO
    Yu F; Hu Z
    Phys Chem Chem Phys; 2020 May; 22(19):11086-11094. PubMed ID: 32373873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonadiabatic trajectory studies of NaI(H2O)n photodissociation dynamics.
    Koch DM; Timerghazin QK; Peslherbe GH; Ladanyi BM; Hynes JT
    J Phys Chem A; 2006 Feb; 110(4):1438-54. PubMed ID: 16435804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociation energy and electronic and vibrational spectroscopy of Co(+)(H2O) and its isotopomers.
    Kocak A; Austein-Miller G; Pearson WL; Altinay G; Metz RB
    J Phys Chem A; 2013 Feb; 117(6):1254-64. PubMed ID: 22835001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic structure and quantum dynamics of photoinitiated dissociation of O2 on rutile TiO2 nanocluster.
    Dholabhai PP; Yu HG
    J Chem Phys; 2013 May; 138(19):194705. PubMed ID: 23697428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling localized photoinduced electrons in rutile-TiO2 using periodic DFT+U methodology.
    Jedidi A; Markovits A; Minot C; Bouzriba S; Abderraba M
    Langmuir; 2010 Nov; 26(21):16232-8. PubMed ID: 20572639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localized Excitation of Ti(3+) Ions in the Photoabsorption and Photocatalytic Activity of Reduced Rutile TiO2.
    Wang Z; Wen B; Hao Q; Liu LM; Zhou C; Mao X; Lang X; Yin WJ; Dai D; Selloni A; Yang X
    J Am Chem Soc; 2015 Jul; 137(28):9146-52. PubMed ID: 26121118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperative Motion in Water-Methanol Clusters Controls the Reaction Rates of Heterogeneous Photocatalytic Reactions.
    Xu BB; Zhou M; Ye M; Yang LY; Wang HF; Wang XL; Yao YF
    J Am Chem Soc; 2021 Jul; 143(29):10940-10947. PubMed ID: 34281341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of ground and low-lying excited states of CoO4: a combined matrix isolation and DFT study.
    Danset D; Alikhani ME; Manceron L
    J Phys Chem A; 2005 Jan; 109(1):105-14. PubMed ID: 16839094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvent Water Controls Photocatalytic Methanol Reforming.
    Xu BB; Zhou M; Zhang R; Ye M; Yang LY; Huang R; Wang HF; Wang XL; Yao YF
    J Phys Chem Lett; 2020 May; 11(9):3738-3744. PubMed ID: 32315184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface domain heterojunction on rutile TiO
    Lin K; Xiao F; Xie Y; Pan K; Wang L; Zhou W; Fu H
    Nanoscale Horiz; 2020 Nov; 5(12):1596-1602. PubMed ID: 33063803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of a model TiO
    Hussain H; Tocci G; Woolcot T; Torrelles X; Pang CL; Humphrey DS; Yim CM; Grinter DC; Cabailh G; Bikondoa O; Lindsay R; Zegenhagen J; Michaelides A; Thornton G
    Nat Mater; 2017 Apr; 16(4):461-466. PubMed ID: 27842073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Importance of polarization in quantum mechanics/molecular mechanics descriptions of electronic excited states: NaI(H2O)n photodissociation dynamics as a case study.
    Koch DM; Peslherbe GH
    J Phys Chem B; 2008 Jan; 112(2):636-49. PubMed ID: 18183959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Descriptors and Thermodynamic Limitations of Electrocatalytic Carbon Dioxide Reduction on Rutile Oxide Surfaces.
    Bhowmik A; Vegge T; Hansen HA
    ChemSusChem; 2016 Nov; 9(22):3230-3243. PubMed ID: 27781396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photodissociation studies of the electronic and vibrational spectroscopy of Ni(+)(H2O).
    Daluz JS; Kocak A; Metz RB
    J Phys Chem A; 2012 Feb; 116(5):1344-52. PubMed ID: 22217001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron/cobalt/nickel regulation for efficient photocatalytic carbon dioxide reduction over phthalocyanine covalent organic frameworks.
    Zhang Q; Chen M; Zhang Y; Ye Y; Liu D; Xu C; Ma Z; Lou B; Yuan R; Sa R
    Nanoscale; 2023 Oct; 15(39):16030-16038. PubMed ID: 37782458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CO2 Capture and Conversion on Rutile TiO2(110) in the Water Environment: Insight by First-Principles Calculations.
    Yin WJ; Krack M; Wen B; Ma SY; Liu LM
    J Phys Chem Lett; 2015 Jul; 6(13):2538-45. PubMed ID: 26266731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.