These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 38358990)

  • 1. Building an ab initio solvated DNA model using Euclidean neural networks.
    Lee AJ; Rackers JA; Pathak S; Bricker WP
    PLoS One; 2024; 19(2):e0297502. PubMed ID: 38358990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting accurate ab initio DNA electron densities with equivariant neural networks.
    Lee AJ; Rackers JA; Bricker WP
    Biophys J; 2022 Oct; 121(20):3883-3895. PubMed ID: 36057785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interatomic force from neural network based variational quantum Monte Carlo.
    Qian Y; Fu W; Ren W; Chen J
    J Chem Phys; 2022 Oct; 157(16):164104. PubMed ID: 36319420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytical Model of Electron Density and Its Machine Learning Inference.
    Cuevas-Zuviría B; Pacios LF
    J Chem Inf Model; 2020 Aug; 60(8):3831-3842. PubMed ID: 32786704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting and Understanding Non-Covalent Interactions Using Novel Forms of Symmetry-Adapted Perturbation Theory.
    Carter-Fenk K; Lao KU; Herbert JM
    Acc Chem Res; 2021 Oct; 54(19):3679-3690. PubMed ID: 34550669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. S/G-1: an ab initio force-field blending frozen Hermite Gaussian densities and distributed multipoles. Proof of concept and first applications to metal cations.
    Chaudret R; Gresh N; Narth C; Lagardère L; Darden TA; Cisneros GA; Piquemal JP
    J Phys Chem A; 2014 Sep; 118(35):7598-612. PubMed ID: 24878003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure, dynamics, and reactivity of hydrated electrons by ab initio molecular dynamics.
    Marsalek O; Uhlig F; VandeVondele J; Jungwirth P
    Acc Chem Res; 2012 Jan; 45(1):23-32. PubMed ID: 21899274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvent effects on catechol's binding affinity: investigating the role of the intra-molecular hydrogen bond through a multi-level computational approach.
    Prampolini G; Campetella M; Ferretti A
    Phys Chem Chem Phys; 2023 Jan; 25(3):2523-2536. PubMed ID: 36602108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physics-based, neural network force fields for reactive molecular dynamics: Investigation of carbene formation from [EMIM
    Stoppelman JP; McDaniel JG
    J Chem Phys; 2021 Sep; 155(10):104112. PubMed ID: 34525833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward Building Protein Force Fields by Residue-Based Systematic Molecular Fragmentation and Neural Network.
    Wang H; Yang W
    J Chem Theory Comput; 2019 Feb; 15(2):1409-1417. PubMed ID: 30550274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning prediction of empirical polarity using SMILES encoding of organic solvents.
    Saini V
    Mol Divers; 2023 Oct; 27(5):2331-2343. PubMed ID: 36334165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AutoSolvate: A toolkit for automating quantum chemistry design and discovery of solvated molecules.
    Hruska E; Gale A; Huang X; Liu F
    J Chem Phys; 2022 Mar; 156(12):124801. PubMed ID: 35364887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fragment Molecular Orbital Calculations with Implicit Solvent Based on the Poisson-Boltzmann Equation: Implementation and DNA Study.
    Okiyama Y; Nakano T; Watanabe C; Fukuzawa K; Mochizuki Y; Tanaka S
    J Phys Chem B; 2018 Apr; 122(16):4457-4471. PubMed ID: 29558137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining Force Fields and Neural Networks for an Accurate Representation of Chemically Diverse Molecular Interactions.
    Illarionov A; Sakipov S; Pereyaslavets L; Kurnikov IV; Kamath G; Butin O; Voronina E; Ivahnenko I; Leontyev I; Nawrocki G; Darkhovskiy M; Olevanov M; Cherniavskyi YK; Lock C; Greenslade S; Sankaranarayanan SK; Kurnikova MG; Potoff J; Kornberg RD; Levitt M; Fain B
    J Am Chem Soc; 2023 Nov; 145(43):23620-23629. PubMed ID: 37856313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio calculation of real solids via neural network ansatz.
    Li X; Li Z; Chen J
    Nat Commun; 2022 Dec; 13(1):7895. PubMed ID: 36550157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Differentiable Neural-Network Force Field for Ionic Liquids.
    Montes-Campos H; Carrete J; Bichelmaier S; Varela LM; Madsen GKH
    J Chem Inf Model; 2022 Jan; 62(1):88-101. PubMed ID: 34941253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Informing geometric deep learning with electronic interactions to accelerate quantum chemistry.
    Qiao Z; Christensen AS; Welborn M; Manby FR; Anandkumar A; Miller TF
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2205221119. PubMed ID: 35901215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Explainable Solvation Free Energy Prediction Combining Graph Neural Networks with Chemical Intuition.
    Low K; Coote ML; Izgorodina EI
    J Chem Inf Model; 2022 Nov; 62(22):5457-5470. PubMed ID: 36317829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.