BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38359188)

  • 1. Optical proximity correction of hot-spot patterns with subwavelength size in DMD maskless projection lithography.
    Guo X; Chen JT; Zhao YY; Cai SC; Duan XM
    Opt Lett; 2024 Feb; 49(4):810-813. PubMed ID: 38359188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic algorithm-based optical proximity correction for DMD maskless lithography.
    Yang Z; Lin J; Liu L; Zhu Z; Zhang R; Wen S; Yin Y; Lan C; Li C; Liu Y
    Opt Express; 2023 Jul; 31(14):23598-23607. PubMed ID: 37475440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intensity modulation based optical proximity optimization for the maskless lithography.
    Liu J; Liu J; Deng Q; Feng J; Zhou S; Hu S
    Opt Express; 2020 Jan; 28(1):548-557. PubMed ID: 32118980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical proximity correction (OPC) in near-field lithography with pixel-based field sectioning time modulation.
    Oh S; Han D; Shim HB; Hahn JW
    Nanotechnology; 2018 Jan; 29(4):045301. PubMed ID: 29206111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consistent pattern printing of the gap structure in femtosecond laser DMD projection lithography.
    Wang TW; Dong XZ; Jin F; Zhao YY; Liu XY; Zheng ML; Duan XM
    Opt Express; 2022 Sep; 30(20):36791-36801. PubMed ID: 36258601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Method for improving the speed and pattern quality of a DMD maskless lithography system using a pulse exposure method.
    Choi J; Kim G; Lee WS; Chang WS; Yoo H
    Opt Express; 2022 Jun; 30(13):22487-22500. PubMed ID: 36224945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Edge smoothing optimization method in DMD digital lithography system based on dynamic blur matching pixel overlap technique.
    Huang S; Ren B; Tang Y; Wu D; Pan J; Tian Z; Jiang C; Li Z; Huang J
    Opt Express; 2024 Jan; 32(2):2114-2123. PubMed ID: 38297748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithographic pattern quality enhancement of DMD lithography with spatiotemporal modulated technology.
    Guo S; Lu Z; Xiong Z; Huang L; Liu H; Li J
    Opt Lett; 2021 Mar; 46(6):1377-1380. PubMed ID: 33720191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of pattern quality in maskless plasmonic lithography via spatial loss modulation.
    Han D; Deng S; Ye T; Wei Y
    Microsyst Nanoeng; 2023; 9():40. PubMed ID: 37007604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Edge smoothness enhancement in DMD scanning lithography system based on a wobulation technique.
    Chen R; Liu H; Zhang H; Zhang W; Xu J; Xu W; Li J
    Opt Express; 2017 Sep; 25(18):21958-21968. PubMed ID: 29041486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast optical proximity correction method based on nonlinear compressive sensing.
    Ma X; Wang Z; Li Y; Arce GR; Dong L; Garcia-Frias J
    Opt Express; 2018 May; 26(11):14479-14498. PubMed ID: 29877485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Batch fabrication of functional optical elements on a fiber facet using DMD based maskless lithography.
    Kim JB; Jeong KH
    Opt Express; 2017 Jul; 25(14):16854-16859. PubMed ID: 28789184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maskless photolithography via holographic optical projection.
    Bay C; Hübner N; Freeman J; Wilkinson T
    Opt Lett; 2010 Jul; 35(13):2230-2. PubMed ID: 20596203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. I-line photolithographic metalenses enabled by distributed optical proximity correction with a deep-learning model.
    Liao WP; Liu HL; Lin YF; Su SS; Chen YT; Lin GB; Tseng TC; Lin TK; Chen CC; Huang WH; Chen SW; Shieh JM; Yu P; Chang YC
    Opt Express; 2022 Jun; 30(12):21184-21194. PubMed ID: 36224843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase-conjugate holographic lithography based on micromirror array recording.
    Lim Y; Hahn J; Lee B
    Appl Opt; 2011 Dec; 50(34):H68-74. PubMed ID: 22193029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of Micro-Optics Elements with Arbitrary Surface Profiles Based on One-Step Maskless Grayscale Lithography.
    Deng Q; Yang Y; Gao H; Zhou Y; He Y; Hu S
    Micromachines (Basel); 2017 Oct; 8(10):. PubMed ID: 30400504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational rule-based approach for corner correction of non-Manhattan geometries in mask aligner photolithography.
    Vetter A; Yan C; Kirner R; Scharf T; Noell W; Voelkel R; Rockstuhl C
    Opt Express; 2019 Oct; 27(22):32523-32535. PubMed ID: 31684463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Digital inverse patterning solutions for fabrication of high-fidelity microstructures in spatial light modulator (SLM)-based projection lithography.
    Chen JT; Zhao YY; Zhu JX; Duan XM
    Opt Express; 2024 Feb; 32(5):6800-6813. PubMed ID: 38439377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Femtosecond 3D photolithography through a digital micromirror device and a microlens array.
    Jakkinapalli A; Baskar B; Wen SB
    Appl Opt; 2022 Jun; 61(16):4891-4899. PubMed ID: 36255974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximizing energy utilization in DMD-based projection lithography.
    Deng MJ; Zhao YY; Liang ZX; Chen JT; Zhang Y; Duan XM
    Opt Express; 2022 Feb; 30(4):4692-4705. PubMed ID: 35209445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.