These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 38359362)

  • 1. Genetic Algorithm for Automated Parameterization of Network Hamiltonian Models of Amyloid Fibril Formation.
    Grazioli G; Tao A; Bhatia I; Regan P
    J Phys Chem B; 2024 Feb; 128(8):1854-1865. PubMed ID: 38359362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.
    Nguyen P; Derreumaux P
    Acc Chem Res; 2014 Feb; 47(2):603-11. PubMed ID: 24368046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Network Hamiltonian models reveal pathways to amyloid fibril formation.
    Yu Y; Grazioli G; Unhelkar MH; Martin RW; Butts CT
    Sci Rep; 2020 Sep; 10(1):15668. PubMed ID: 32973286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Network-Based Classification and Modeling of Amyloid Fibrils.
    Grazioli G; Yu Y; Unhelkar MH; Martin RW; Butts CT
    J Phys Chem B; 2019 Jul; 123(26):5452-5462. PubMed ID: 31095387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of water in protein aggregation and amyloid polymorphism.
    Thirumalai D; Reddy G; Straub JE
    Acc Chem Res; 2012 Jan; 45(1):83-92. PubMed ID: 21761818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assembly of amyloid β peptides in the presence of fibril seeds: one-pot coarse-grained molecular dynamics simulations.
    Xu L; Chen Y; Wang X
    J Phys Chem B; 2014 Aug; 118(31):9238-46. PubMed ID: 25050788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into Stabilizing Forces in Amyloid Fibrils of Differing Sizes from Polarizable Molecular Dynamics Simulations.
    Davidson DS; Brown AM; Lemkul JA
    J Mol Biol; 2018 Oct; 430(20):3819-3834. PubMed ID: 29782833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fibril elongation by Aβ(17-42): kinetic network analysis of hybrid-resolution molecular dynamics simulations.
    Han W; Schulten K
    J Am Chem Soc; 2014 Sep; 136(35):12450-60. PubMed ID: 25134066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amyloid assembly is dominated by misregistered kinetic traps on an unbiased energy landscape.
    Jia Z; Schmit JD; Chen J
    Proc Natl Acad Sci U S A; 2020 May; 117(19):10322-10328. PubMed ID: 32345723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amyloid Fibril Design: Limiting Structural Polymorphism in Alzheimer's Aβ Protofilaments.
    Tywoniuk B; Yuan Y; McCartan S; Szydłowska BM; Tofoleanu F; Brooks BR; Buchete NV
    J Phys Chem B; 2018 Dec; 122(49):11535-11545. PubMed ID: 30335383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The hydrophobic effect characterises the thermodynamic signature of amyloid fibril growth.
    van Gils JHM; van Dijk E; Peduzzo A; Hofmann A; Vettore N; Schützmann MP; Groth G; Mouhib H; Otzen DE; Buell AK; Abeln S
    PLoS Comput Biol; 2020 May; 16(5):e1007767. PubMed ID: 32365068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer Simulations Aimed at Exploring Protein Aggregation and Dissociation.
    Nguyen PH; Derreumaux P
    Methods Mol Biol; 2022; 2340():175-196. PubMed ID: 35167075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying the Template for Oligomer to Fibril Conversion for Amyloid-β (1-42) Oligomers using Hamiltonian Replica Exchange Molecular Dynamics.
    Saha D; Jana B
    Chemphyschem; 2022 Dec; 23(24):e202200393. PubMed ID: 36052514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange.
    Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM
    Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward a molecular theory of early and late events in monomer to amyloid fibril formation.
    Straub JE; Thirumalai D
    Annu Rev Phys Chem; 2011; 62():437-63. PubMed ID: 21219143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of fiber assembly: treatment of Aβ peptide aggregation with a coarse-grained united-residue force field.
    Rojas A; Liwo A; Browne D; Scheraga HA
    J Mol Biol; 2010 Dec; 404(3):537-52. PubMed ID: 20888834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of amyloid-β fibril elongation.
    Gurry T; Stultz CM
    Biochemistry; 2014 Nov; 53(44):6981-91. PubMed ID: 25330398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dimerization Mechanism of Alzheimer Aβ
    Nguyen PH; Sterpone F; Pouplana R; Derreumaux P; Campanera JM
    J Phys Chem B; 2016 Dec; 120(47):12111-12126. PubMed ID: 27933940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-folding and aggregation of amyloid nanofibrils.
    Paparcone R; Cranford SW; Buehler MJ
    Nanoscale; 2011 Apr; 3(4):1748-55. PubMed ID: 21347488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics and mechanical stability of the fibril state control fibril formation time of polypeptide chains: A computational study.
    Kouza M; Co NT; Li MS; Kmiecik S; Kolinski A; Kloczkowski A; Buhimschi IA
    J Chem Phys; 2018 Jun; 148(21):215106. PubMed ID: 29884031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.