These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38359609)

  • 21. Effect of task-related continuous auditory feedback during learning of tracking motion exercises.
    Rosati G; Oscari F; Spagnol S; Avanzini F; Masiero S
    J Neuroeng Rehabil; 2012 Oct; 9():79. PubMed ID: 23046683
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neural representations for multi-context visuomotor adaptation and the impact of common representation on multi-task performance: a multivariate decoding approach.
    Song Y; Shin W; Kim P; Jeong J
    Front Hum Neurosci; 2023; 17():1221944. PubMed ID: 37822708
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Observation learning versus physical practice leads to different consolidation outcomes in a movement timing task.
    Trempe M; Sabourin M; Rohbanfard H; Proteau L
    Exp Brain Res; 2011 Mar; 209(2):181-92. PubMed ID: 21279634
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Age-related effects in interlimb practice on coding complex movement sequences.
    Panzer S; Gruetzmacher N; Fries U; Krueger M; Shea CH
    Hum Mov Sci; 2011 Jun; 30(3):459-74. PubMed ID: 21349597
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Implicit visual learning: how the task set modulates learning by determining the stimulus-response binding.
    Haider H; Eberhardt K; Esser S; Rose M
    Conscious Cogn; 2014 May; 26():145-61. PubMed ID: 24747993
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the influence of informational content and key-response effect mapping on implicit learning and error monitoring in the serial reaction time (SRT) task.
    Rüsseler J; Münte TF; Wiswede D
    Exp Brain Res; 2018 Jan; 236(1):259-273. PubMed ID: 29128978
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dissociable contributions of motor-execution and action-observation to intermanual transfer.
    Hayes SJ; Andrew M; Elliott D; Roberts JW; Bennett SJ
    Neurosci Lett; 2012 Jan; 506(2):346-50. PubMed ID: 22155050
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dissociable contributions of motor-execution and action-observation to intramanual transfer.
    Hayes SJ; Elliott D; Andrew M; Roberts JW; Bennett SJ
    Exp Brain Res; 2012 Sep; 221(4):459-66. PubMed ID: 22821082
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Concurrent Continuous Versus Bandwidth Visual Feedback With Varying Body Representation for the 2-Legged Squat Exercise.
    Sanford S; Liu M; Nataraj R
    J Sport Rehabil; 2021 Feb; 30(5):794-803. PubMed ID: 33596545
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interlimb transfer and generalisation of learning in the context of persistent failure to accomplish a visuomotor task.
    Bolton DAE; Buick AR; Carroll TJ; Carson RG
    Exp Brain Res; 2019 Apr; 237(4):1077-1092. PubMed ID: 30758515
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dual-task practice enhances motor learning: a preliminary investigation.
    Goh HT; Sullivan KJ; Gordon J; Wulf G; Winstein CJ
    Exp Brain Res; 2012 Oct; 222(3):201-10. PubMed ID: 22886044
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The learning of isometric force time scales is differentially influenced by constant and variable practice.
    King AC; Newell KM
    Exp Brain Res; 2013 Jun; 227(2):149-59. PubMed ID: 23625075
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An integrated reweighting theory of perceptual learning.
    Dosher BA; Jeter P; Liu J; Lu ZL
    Proc Natl Acad Sci U S A; 2013 Aug; 110(33):13678-83. PubMed ID: 23898204
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Retention of touchscreen skills is compromised in Parkinson's disease.
    Nackaerts E; Ginis P; Heremans E; Swinnen SP; Vandenberghe W; Nieuwboer A
    Behav Brain Res; 2020 Jan; 378():112265. PubMed ID: 31568836
    [TBL] [Abstract][Full Text] [Related]  

  • 35. General motor representations are developed during action-observation.
    Hayes SJ; Elliott D; Bennett SJ
    Exp Brain Res; 2010 Jul; 204(2):199-206. PubMed ID: 20502885
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence that endpoint feedback facilitates intermanual transfer of visuomotor force learning by a cognitive strategy.
    De Havas J; Haggard P; Gomi H; Bestmann S; Ikegaya Y; Hagura N
    J Neurophysiol; 2022 Jan; 127(1):16-26. PubMed ID: 34879215
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effector-independent motor sequence representations exist in extrinsic and intrinsic reference frames.
    Wiestler T; Waters-Metenier S; Diedrichsen J
    J Neurosci; 2014 Apr; 34(14):5054-64. PubMed ID: 24695723
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of inactivating individual cerebellar nuclei on the performance and retention of an operantly conditioned forelimb movement.
    Milak MS; Shimansky Y; Bracha V; Bloedel JR
    J Neurophysiol; 1997 Aug; 78(2):939-59. PubMed ID: 9307126
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Perceptual information supports transfer of learning in coordinated rhythmic movement.
    Leach D; Kolokotroni Z; Wilson AD
    Psychol Res; 2021 Apr; 85(3):1167-1182. PubMed ID: 32130496
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transfer of short-term motor learning across the lower limbs as a function of task conception and practice order.
    Stöckel T; Wang J
    Brain Cogn; 2011 Nov; 77(2):271-9. PubMed ID: 21889250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.