BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38359759)

  • 1. Investigation of bismuth-based metal-organic frameworks for effective capture and immobilization of radioiodine gas.
    Jung YE; Yang JH; Yim MS
    J Hazard Mater; 2024 Apr; 467():133777. PubMed ID: 38359759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly radioiodine gas capture by 2-mercaptobenzimidazole-functionalized Bi/Mg oxide and effective iodine waste immobilization by etidronic-Bi
    Muhire C; Zhang D; Chang C; Zhang X; Li D; Zhiren G; Zhang Z; Zhang F; Hou J; Li J; Xu X
    J Hazard Mater; 2024 May; 474():134688. PubMed ID: 38805823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of iodine by dry adsorbents in filtered containment venting system after 10 years of Fukushima accident.
    Ahad J; Ahmad M; Farooq A; Waheed K; Irfan N
    Environ Sci Pollut Res Int; 2023 Jun; 30(30):74628-74670. PubMed ID: 37231136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review of recent developments in iodine wasteform production.
    Asmussen RM; Turner J; Chong S; Riley BJ
    Front Chem; 2022; 10():1043653. PubMed ID: 36618856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfur vacancy-rich bismuth sulfide nanowire derived from CAU-17 for radioactive iodine capture in complex environments: Performance and intrinsic mechanisms.
    Chen KW; Zhou XY; Dai XJ; Chen YT; Li SX; Gong CH; Wang P; Mao P; Jiao Y; Chen K; Yang Y
    J Hazard Mater; 2024 Jul; 473():134584. PubMed ID: 38761762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Efficient Capture of Volatile Iodine by Conjugated Microporous Polymers Constructed Using Planar 3- and 4-Connected Organic Monomers.
    Li C; Yan Q; Xu H; Luo S; Hu H; Wang S; Su X; Xiao S; Gao Y
    Molecules; 2024 May; 29(10):. PubMed ID: 38792104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in the removal of radioactive iodine by bismuth-based materials.
    Hao Y; Tian Z; Liu C; Xiao C
    Front Chem; 2023; 11():1122484. PubMed ID: 36762197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porous MOF-808@PVDF beads for removal of iodine from gas streams.
    Wang L; Chen P; Dong X; Zhang W; Zhao S; Xiao S; Ouyang Y
    RSC Adv; 2020 Dec; 10(73):44679-44687. PubMed ID: 35516247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Dimensional-Network-Structured Bismuth-Based Silica Aerogel Fiber Felt for Highly Efficient Immobilization of Iodine.
    Cao J; Duan S; Zhao Q; Chen G; Wang Z; Liu R; Zhu L; Duan T
    Langmuir; 2023 Sep; 39(36):12910-12919. PubMed ID: 37649325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iodine Capture Using Zr-Based Metal-Organic Frameworks (Zr-MOFs): Adsorption Performance and Mechanism.
    Chen P; He X; Pang M; Dong X; Zhao S; Zhang W
    ACS Appl Mater Interfaces; 2020 May; 12(18):20429-20439. PubMed ID: 32255599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile synthesis of novel Bi
    Xian Q; Chen L; Fan W; Liu Y; He X; Dan H; Zhu L; Ding Y; Duan T
    J Hazard Mater; 2022 Feb; 424(Pt C):127678. PubMed ID: 34775310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bi
    Chee TS; Lee S; Ng WJ; Akmal M; Ryu HJ
    ACS Appl Mater Interfaces; 2023 Aug; 15(34):40438-40450. PubMed ID: 37581564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of NO
    Baskaran K; Elliott C; Ali M; Moon J; Beland J; Cohrs D; Chong S; Riley BJ; Chidambaram D; Carlson K
    J Hazard Mater; 2023 Mar; 446():130644. PubMed ID: 36587601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capture of Iodine from Nuclear-Fuel-Reprocessing Off-Gas: Influence of Aging on a Reduced Silver Mordenite Adsorbent after Exposure to NO/NO
    Wiechert AI; Ladshaw AP; Moon J; Abney CW; Nan Y; Choi S; Liu J; Tavlarides LL; Tsouris C; Yiacoumi S
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49680-49693. PubMed ID: 33090761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Barbituric and thiobarbituric acid-based UiO-66-NH
    Zahid M; Zhang D; Xu X; Pan M; Ul Haq MH; Reda AT; Xu W
    J Hazard Mater; 2021 Aug; 416():125835. PubMed ID: 34492792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capture of Iodide by Bismuth Vanadate and Bismuth Oxide: An Insight into the Process and its Aftermath.
    Zhang L; Gonçalves AAS; Jiang B; Jaroniec M
    ChemSusChem; 2018 May; 11(9):1486-1493. PubMed ID: 29539204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tetrathiafulvalene-based covalent organic frameworks for ultrahigh iodine capture.
    Chang J; Li H; Zhao J; Guan X; Li C; Yu G; Valtchev V; Yan Y; Qiu S; Fang Q
    Chem Sci; 2021 May; 12(24):8452-8457. PubMed ID: 34221327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porous Copper-Loaded Zeolites for High-Efficiency Capture of Iodine from Spent Fuel Reprocessing Off-Gas.
    Zhou J; Chen Q; Li T; Lan T; Bai P; Liu F; Yuan Z; Zheng W; Yan W; Yan T
    Inorg Chem; 2022 May; 61(20):7746-7753. PubMed ID: 35544682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capture of iodide from wastewater by effective adsorptive membrane synthesized from MIL-125-NH
    El-Shahat M; Abdelhamid AE; Abdelhameed RM
    Carbohydr Polym; 2020 Mar; 231():115742. PubMed ID: 31888810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of Radioactive Iodine Trapping Mechanism by Zinc-Based Metal-Organic Frameworks with Various N-Containing Carboxylate Ligands.
    Yu RL; Li QF; Li ZL; Wang XY; Xia LZ
    ACS Appl Mater Interfaces; 2023 Jul; 15(29):35082-35091. PubMed ID: 37458304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.