BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 38359983)

  • 21. MAD2L2 promotes replication fork protection and recovery in a shieldin-independent and REV3L-dependent manner.
    Paniagua I; Tayeh Z; Falcone M; Hernández Pérez S; Cerutti A; Jacobs JJL
    Nat Commun; 2022 Sep; 13(1):5167. PubMed ID: 36075897
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Maintaining genome stability at the replication fork.
    Branzei D; Foiani M
    Nat Rev Mol Cell Biol; 2010 Mar; 11(3):208-19. PubMed ID: 20177396
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Homologous Recombination as a Fundamental Genome Surveillance Mechanism during DNA Replication.
    Spies J; Polasek-Sedlackova H; Lukas J; Somyajit K
    Genes (Basel); 2021 Dec; 12(12):. PubMed ID: 34946909
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prevention of unwanted recombination at damaged replication forks.
    Lehmann CP; Jiménez-Martín A; Branzei D; Tercero JA
    Curr Genet; 2020 Dec; 66(6):1045-1051. PubMed ID: 32671464
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DNA Fiber Analysis: Mind the Gap!
    Quinet A; Carvajal-Maldonado D; Lemacon D; Vindigni A
    Methods Enzymol; 2017; 591():55-82. PubMed ID: 28645379
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gap-filling and bypass at the replication fork are both active mechanisms for tolerance of low-dose ultraviolet-induced DNA damage in the human genome.
    Quinet A; Vessoni AT; Rocha CR; Gottifredi V; Biard D; Sarasin A; Menck CF; Stary A
    DNA Repair (Amst); 2014 Feb; 14():27-38. PubMed ID: 24380689
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Studying DNA replication fork stability in Xenopus egg extract.
    Hashimoto Y; Costanzo V
    Methods Mol Biol; 2011; 745():437-45. PubMed ID: 21660709
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Visualization of DNA replication in the vertebrate model system DT40 using the DNA fiber technique.
    Schwab RA; Niedzwiedz W
    J Vis Exp; 2011 Oct; (56):e3255. PubMed ID: 22064662
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks.
    Kim TM; Son MY; Dodds S; Hu L; Hasty P
    Mutat Res; 2014; 766-767():66-72. PubMed ID: 25847274
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks.
    Kim TM; Son MY; Dodds S; Hu L; Hasty P
    Mutat Res; 2014; 766-767():66-72. PubMed ID: 25773776
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detection of Post-Replicative Gaps Accumulation and Repair in Human Cells Using the DNA Fiber Assay.
    Martins DJ; Tirman S; Quinet A; Menck CFM
    J Vis Exp; 2022 Feb; (180):. PubMed ID: 35188138
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The BRCA2 and CDKN1A-interacting protein (BCCIP) stabilizes stalled replication forks and prevents degradation of nascent DNA.
    Singh B; Roy Chowdhury S; Mansuri MS; Pillai SJ; Mehrotra S
    FEBS Lett; 2022 Aug; 596(16):2041-2055. PubMed ID: 35592921
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNA-PKcs and PARP1 Bind to Unresected Stalled DNA Replication Forks Where They Recruit XRCC1 to Mediate Repair.
    Ying S; Chen Z; Medhurst AL; Neal JA; Bao Z; Mortusewicz O; McGouran J; Song X; Shen H; Hamdy FC; Kessler BM; Meek K; Helleday T
    Cancer Res; 2016 Mar; 76(5):1078-88. PubMed ID: 26603896
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Maintenance of fork integrity at damaged DNA and natural pause sites.
    Tourrière H; Pasero P
    DNA Repair (Amst); 2007 Jul; 6(7):900-13. PubMed ID: 17379579
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combining electron microscopy with single molecule DNA fiber approaches to study DNA replication dynamics.
    Vindigni A; Lopes M
    Biophys Chem; 2017 Jun; 225():3-9. PubMed ID: 27939387
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ZNF365 promotes stalled replication forks recovery to maintain genome stability.
    Zhang Y; Park E; Kim CS; Paik JH
    Cell Cycle; 2013 Sep; 12(17):2817-28. PubMed ID: 23966166
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The roles of DNA polymerase ζ and the Y family DNA polymerases in promoting or preventing genome instability.
    Sharma S; Helchowski CM; Canman CE
    Mutat Res; 2013; 743-744():97-110. PubMed ID: 23195997
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ubiquitylation at Stressed Replication Forks: Mechanisms and Functions.
    Mirsanaye AS; Typas D; Mailand N
    Trends Cell Biol; 2021 Jul; 31(7):584-597. PubMed ID: 33612353
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Repair and tolerance of DNA damage at the replication fork: A structural perspective.
    Eichman BF
    Curr Opin Struct Biol; 2023 Aug; 81():102618. PubMed ID: 37269798
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Replication stress induces specific enrichment of RECQ1 at common fragile sites FRA3B and FRA16D.
    Lu X; Parvathaneni S; Hara T; Lal A; Sharma S
    Mol Cancer; 2013 Apr; 12(1):29. PubMed ID: 23601052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.