These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 38360222)
21. Enhancement of properties of a cell-laden GelMA hydrogel-based bioink via calcium phosphate phase transition. Kim J; Raja N; Choi YJ; Gal CW; Sung A; Park H; Yun HS Biofabrication; 2023 Nov; 16(1):. PubMed ID: 37871585 [TBL] [Abstract][Full Text] [Related]
22. Effects of transglutaminase cross-linking process on printability of gelatin microgel-gelatin solution composite bioink. Song K; Ren B; Zhai Y; Chai W; Huang Y Biofabrication; 2021 Dec; 14(1):. PubMed ID: 34823234 [TBL] [Abstract][Full Text] [Related]
23. Recent Advances on Bioprinted Gelatin Methacrylate-Based Hydrogels for Tissue Repair. Rajabi N; Rezaei A; Kharaziha M; Bakhsheshi-Rad HR; Luo H; RamaKrishna S; Berto F Tissue Eng Part A; 2021 Jun; 27(11-12):679-702. PubMed ID: 33499750 [TBL] [Abstract][Full Text] [Related]
24. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Ouyang L; Yao R; Zhao Y; Sun W Biofabrication; 2016 Sep; 8(3):035020. PubMed ID: 27634915 [TBL] [Abstract][Full Text] [Related]
25. ECM Based Bioink for Tissue Mimetic 3D Bioprinting. Nam SY; Park SH Adv Exp Med Biol; 2018; 1064():335-353. PubMed ID: 30471042 [TBL] [Abstract][Full Text] [Related]
26. Tunable metacrylated silk fibroin-based hybrid bioinks for the bioprinting of tissue engineering scaffolds. Yang J; Li Z; Li S; Zhang Q; Zhou X; He C Biomater Sci; 2023 Feb; 11(5):1895-1909. PubMed ID: 36722864 [TBL] [Abstract][Full Text] [Related]
27. Microbial transglutaminase induced controlled crosslinking of gelatin methacryloyl to tailor rheological properties for 3D printing. Zhou M; Lee BH; Tan YJ; Tan LP Biofabrication; 2019 Mar; 11(2):025011. PubMed ID: 30743259 [TBL] [Abstract][Full Text] [Related]
28. Advantages of photo-curable collagen-based cell-laden bioinks compared to methacrylated gelatin (GelMA) in digital light processing (DLP) and extrusion bioprinting. Shi H; Li Y; Xu K; Yin J Mater Today Bio; 2023 Dec; 23():100799. PubMed ID: 37766893 [TBL] [Abstract][Full Text] [Related]
29. 3D bioprinting by reinforced bioink based on photocurable interpenetrating networks for cartilage tissue engineering. Shen J; Song W; Liu J; Peng X; Tan Z; Xu Y; Liu S; Ren L Int J Biol Macromol; 2024 Jan; 254(Pt 1):127671. PubMed ID: 37884244 [TBL] [Abstract][Full Text] [Related]
30. Gelatin methacrylate hydrogel with drug-loaded polymer microspheres as a new bioink for 3D bioprinting. Mirek A; Belaid H; Bartkowiak A; Barranger F; Salmeron F; Kajdan M; Grzeczkowicz M; Cavaillès V; Lewińska D; Bechelany M Biomater Adv; 2023 Jul; 150():213436. PubMed ID: 37104964 [TBL] [Abstract][Full Text] [Related]
31. Development of GelMA/PCL and dECM/PCL resins for 3D printing of acellular in vitro tissue scaffolds by stereolithography. Elomaa L; Keshi E; Sauer IM; Weinhart M Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110958. PubMed ID: 32409091 [TBL] [Abstract][Full Text] [Related]
32. Protocols of 3D Bioprinting of Gelatin Methacryloyl Hydrogel Based Bioinks. Xie M; Yu K; Sun Y; Shao L; Nie J; Gao Q; Qiu J; Fu J; Chen Z; He Y J Vis Exp; 2019 Dec; (154):. PubMed ID: 31904016 [TBL] [Abstract][Full Text] [Related]
33. Development and systematic characterization of GelMA/alginate/PEGDMA/xanthan gum hydrogel bioink system for extrusion bioprinting. Li J; Moeinzadeh S; Kim C; Pan CC; Weale G; Kim S; Abrams G; James AW; Choo H; Chan C; Yang YP Biomaterials; 2023 Feb; 293():121969. PubMed ID: 36566553 [TBL] [Abstract][Full Text] [Related]
34. In situ 3D bioprinting with bioconcrete bioink. Xie M; Shi Y; Zhang C; Ge M; Zhang J; Chen Z; Fu J; Xie Z; He Y Nat Commun; 2022 Jun; 13(1):3597. PubMed ID: 35739106 [TBL] [Abstract][Full Text] [Related]
35. Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity. Ning L; Mehta R; Cao C; Theus A; Tomov M; Zhu N; Weeks ER; Bauser-Heaton H; Serpooshan V ACS Appl Mater Interfaces; 2020 Oct; 12(40):44563-44577. PubMed ID: 32966746 [TBL] [Abstract][Full Text] [Related]
36. Sonochemical Degradation of Gelatin Methacryloyl to Control Viscoelasticity for Inkjet Bioprinting. Lee Y; Park JA; Tuladhar T; Jung S Macromol Biosci; 2023 May; 23(5):e2200509. PubMed ID: 36896820 [TBL] [Abstract][Full Text] [Related]
37. Direct-write 3D printing and characterization of a GelMA-based biomaterial for intracorporeal tissue. Adib AA; Sheikhi A; Shahhosseini M; Simeunović A; Wu S; Castro CE; Zhao R; Khademhosseini A; Hoelzle DJ Biofabrication; 2020 Jul; 12(4):045006. PubMed ID: 32464607 [TBL] [Abstract][Full Text] [Related]
38. Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks. Cidonio G; Alcala-Orozco CR; Lim KS; Glinka M; Mutreja I; Kim YH; Dawson JI; Woodfield TBF; Oreffo ROC Biofabrication; 2019 Jun; 11(3):035027. PubMed ID: 30991370 [TBL] [Abstract][Full Text] [Related]
39. A photo-crosslinkable cartilage-derived extracellular matrix bioink for auricular cartilage tissue engineering. Visscher DO; Lee H; van Zuijlen PPM; Helder MN; Atala A; Yoo JJ; Lee SJ Acta Biomater; 2021 Feb; 121():193-203. PubMed ID: 33227486 [TBL] [Abstract][Full Text] [Related]
40. Advancing Peripheral Nerve Regeneration: 3D Bioprinting of GelMA-Based Cell-Laden Electroactive Bioinks for Nerve Conduits. Das S; Thimukonda Jegadeesan J; Basu B ACS Biomater Sci Eng; 2024 Mar; 10(3):1620-1645. PubMed ID: 38345020 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]