These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 38360222)
61. Sequential Cross-linking of Gallic Acid-Functionalized GelMA-Based Bioinks with Enhanced Printability for Extrusion-Based 3D Bioprinting. Jongprasitkul H; Turunen S; Parihar VS; Kellomäki M Biomacromolecules; 2023 Jan; 24(1):502-514. PubMed ID: 36544430 [TBL] [Abstract][Full Text] [Related]
62. Biofabrication of skin tissue constructs using alginate, gelatin and diethylaminoethyl cellulose bioink. Somasekharan LT; Raju R; Kumar S; Geevarghese R; Nair RP; Kasoju N; Bhatt A Int J Biol Macromol; 2021 Oct; 189():398-409. PubMed ID: 34419550 [TBL] [Abstract][Full Text] [Related]
63. Improving printability of hydrogel-based bio-inks for thermal inkjet bioprinting applications Suntornnond R; Ng WL; Huang X; Yeow CHE; Yeong WY J Mater Chem B; 2022 Aug; 10(31):5989-6000. PubMed ID: 35876487 [TBL] [Abstract][Full Text] [Related]
64. Gelatin Methacryloyl (GelMA) - 45S5 Bioactive Glass (BG) Composites for Bone Tissue Engineering: 3D Extrusion Printability and Cytocompatibility Assessment Using Human Osteoblasts. Akhtar M; Peng P; Bernhardt A; Gelinsky M; Ur Rehman MA; Boccaccini AR; Basu B ACS Biomater Sci Eng; 2024 Aug; 10(8):5122-5135. PubMed ID: 39038164 [TBL] [Abstract][Full Text] [Related]
65. Patient-Specific Bone Particles Bioprinting for Bone Tissue Engineering. Ratheesh G; Vaquette C; Xiao Y Adv Healthc Mater; 2020 Dec; 9(23):e2001323. PubMed ID: 33166078 [TBL] [Abstract][Full Text] [Related]
66. 3D bioprinting of mouse pre-osteoblasts and human MSCs using bioinks consisting of gelatin and decellularized bone particles. Kara Özenler A; Distler T; Akkineni AR; Tihminlioglu F; Gelinsky M; Boccaccini AR Biofabrication; 2024 Mar; 16(2):. PubMed ID: 38394672 [TBL] [Abstract][Full Text] [Related]
67. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments. Liu W; Zhong Z; Hu N; Zhou Y; Maggio L; Miri AK; Fragasso A; Jin X; Khademhosseini A; Zhang YS Biofabrication; 2018 Jan; 10(2):024102. PubMed ID: 29176035 [TBL] [Abstract][Full Text] [Related]
68. 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix. Shin YJ; Shafranek RT; Tsui JH; Walcott J; Nelson A; Kim DH Acta Biomater; 2021 Jan; 119():75-88. PubMed ID: 33166713 [TBL] [Abstract][Full Text] [Related]
69. Direct 3D Bioprinting of Tough and Antifatigue Cell-Laden Constructs Enabled by a Self-Healing Hydrogel Bioink. Liu Q; Yang J; Wang Y; Wu T; Liang Y; Deng K; Luan G; Chen Y; Huang Z; Yue K Biomacromolecules; 2023 Jun; 24(6):2549-2562. PubMed ID: 37115848 [TBL] [Abstract][Full Text] [Related]
70. Post-decellularized printing of cartilage extracellular matrix: distinction between biomaterial ink and bioink. Mokhtarinia K; Masaeli E Biomater Sci; 2023 Mar; 11(7):2317-2329. PubMed ID: 36751955 [TBL] [Abstract][Full Text] [Related]
71. A dual-crosslinking electroactive hydrogel based on gelatin methacrylate and dibenzaldehyde-terminated telechelic polyethylene glycol for 3D bio-printing. Wang Y; Yang S; Cai H; Hu H; Hu K; Sun Z; Liu R; Wei Y; Han L Sci Rep; 2024 Feb; 14(1):4118. PubMed ID: 38374394 [TBL] [Abstract][Full Text] [Related]
72. Marine Biomaterial-Based Bioinks for Generating 3D Printed Tissue Constructs. Zhang X; Kim GJ; Kang MG; Lee JK; Seo JW; Do JT; Hong K; Cha JM; Shin SR; Bae H Mar Drugs; 2018 Dec; 16(12):. PubMed ID: 30518062 [TBL] [Abstract][Full Text] [Related]
73. 3D Bioprinting of Multi-Material Decellularized Liver Matrix Hydrogel at Physiological Temperatures. Khati V; Ramachandraiah H; Pati F; Svahn HA; Gaudenzi G; Russom A Biosensors (Basel); 2022 Jul; 12(7):. PubMed ID: 35884324 [TBL] [Abstract][Full Text] [Related]
74. Engineering of Uniform Epidermal Layers via Sacrificial Gelatin Bioink-Assisted 3D Extrusion Bioprinting of Skin. Ahn M; Cho WW; Lee H; Park W; Lee SH; Back JW; Gao Q; Gao G; Cho DW; Kim BS Adv Healthc Mater; 2023 Oct; 12(27):e2301015. PubMed ID: 37537366 [TBL] [Abstract][Full Text] [Related]
75. 3D bioprinting of photo-crosslinkable silk methacrylate (SilMA)-polyethylene glycol diacrylate (PEGDA) bioink for cartilage tissue engineering. Bandyopadhyay A; Mandal BB; Bhardwaj N J Biomed Mater Res A; 2022 Apr; 110(4):884-898. PubMed ID: 34913587 [TBL] [Abstract][Full Text] [Related]
76. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks. Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047 [TBL] [Abstract][Full Text] [Related]
77. Gelatin methacryloyl and Laponite bioink for 3D bioprinted organotypic tumor modeling. de Barros NR; Gomez A; Ermis M; Falcone N; Haghniaz R; Young P; Gao Y; Aquino AF; Li S; Niu S; Chen R; Huang S; Zhu Y; Eliahoo P; Sun A; Khorsandi D; Kim J; Kelber J; Khademhosseini A; Kim HJ; Li B Biofabrication; 2023 Jul; 15(4):. PubMed ID: 37348491 [TBL] [Abstract][Full Text] [Related]
78. Tunable metacrylated hyaluronic acid-based hybrid bioinks for stereolithography 3D bioprinting. Hossain Rakin R; Kumar H; Rajeev A; Natale G; Menard F; Li ITS; Kim K Biofabrication; 2021 Sep; 13(4):. PubMed ID: 34507314 [TBL] [Abstract][Full Text] [Related]
80. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts. Gonzalez-Fernandez T; Tenorio AJ; Campbell KT; Silva EA; Leach JK Tissue Eng Part A; 2021 Sep; 27(17-18):1168-1181. PubMed ID: 33218292 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]