BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 38360292)

  • 1. Nanoparticle-mediated blockade of CXCL12/CXCR4 signaling enhances glioblastoma immunotherapy: Monitoring early responses with MRI radiomics.
    Wei R; Li J; Lin W; Pang X; Yang H; Lai S; Wei X; Jiang X; Yuan Y; Yang R
    Acta Biomater; 2024 Mar; 177():414-430. PubMed ID: 38360292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual blockade of CXCL12-CXCR4 and PD-1-PD-L1 pathways prolongs survival of ovarian tumor-bearing mice by prevention of immunosuppression in the tumor microenvironment.
    Zeng Y; Li B; Liang Y; Reeves PM; Qu X; Ran C; Liu Q; Callahan MV; Sluder AE; Gelfand JA; Chen H; Poznansky MC
    FASEB J; 2019 May; 33(5):6596-6608. PubMed ID: 30802149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systemic Delivery of an Adjuvant CXCR4-CXCL12 Signaling Inhibitor Encapsulated in Synthetic Protein Nanoparticles for Glioma Immunotherapy.
    Alghamri MS; Banerjee K; Mujeeb AA; Mauser A; Taher A; Thalla R; McClellan BL; Varela ML; Stamatovic SM; Martinez-Revollar G; Andjelkovic AV; Gregory JV; Kadiyala P; Calinescu A; Jiménez JA; Apfelbaum AA; Lawlor ER; Carney S; Comba A; Faisal SM; Barissi M; Edwards MB; Appelman H; Sun Y; Gan J; Ackermann R; Schwendeman A; Candolfi M; Olin MR; Lahann J; Lowenstein PR; Castro MG
    ACS Nano; 2022 Jun; 16(6):8729-8750. PubMed ID: 35616289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CXCR4-targeted nitric oxide nanoparticles deliver PD-L1 siRNA for immunotherapy against glioblastoma.
    Hsieh HT; Huang HC; Chung CW; Chiang CC; Hsia T; Wu HF; Huang RL; Chiang CS; Wang J; Lu TT; Chen Y
    J Control Release; 2022 Dec; 352():920-930. PubMed ID: 36334859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Therapeutic targeting of tumor-associated myeloid cells synergizes with radiation therapy for glioblastoma.
    Zhang P; Miska J; Lee-Chang C; Rashidi A; Panek WK; An S; Zannikou M; Lopez-Rosas A; Han Y; Xiao T; Pituch KC; Kanojia D; Balyasnikova IV; Lesniak MS
    Proc Natl Acad Sci U S A; 2019 Nov; 116(47):23714-23723. PubMed ID: 31712430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functionalized biomimetic nanoparticles combining programmed death-1/programmed death-ligand 1 blockade with photothermal ablation for enhanced colorectal cancer immunotherapy.
    Xiao Y; Zhu T; Zeng Q; Tan Q; Jiang G; Huang X
    Acta Biomater; 2023 Feb; 157():451-466. PubMed ID: 36442821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-Delivery Nanomicelles for Potentiating TNBC Immunotherapy by Synergetically Reshaping CAFs-Mediated Tumor Stroma and Reprogramming Immunosuppressive Microenvironment.
    Zhang Y; Han X; Wang K; Liu D; Ding X; Hu Z; Wang J
    Int J Nanomedicine; 2023; 18():4329-4346. PubMed ID: 37545872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coadministration of iRGD peptide with ROS-sensitive nanoparticles co-delivering siFGL1 and siPD-L1 enhanced tumor immunotherapy.
    Wan WJ; Huang G; Wang Y; Tang Y; Li H; Jia CH; Liu Y; You BG; Zhang XN
    Acta Biomater; 2021 Dec; 136():473-484. PubMed ID: 34571271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism/Immunity Dual-Regulation Thermogels Potentiating Immunotherapy of Glioblastoma Through Lactate-Excretion Inhibition and PD-1/PD-L1 Blockade.
    Li T; Xu D; Ruan Z; Zhou J; Sun W; Rao B; Xu H
    Adv Sci (Weinh); 2024 May; 11(18):e2310163. PubMed ID: 38460167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allomelanin-based biomimetic nanotherapeutics for orthotopic glioblastoma targeted photothermal immunotherapy.
    Sun M; Li Y; Zhang W; Gu X; Wen R; Zhang K; Mao J; Huang C; Zhang X; Nie M; Zhang Z; Qi C; Cai K; Liu G
    Acta Biomater; 2023 Aug; 166():552-566. PubMed ID: 37236575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hollow Cu2MoS4 nanoparticles loaded with immune checkpoint inhibitors reshape the tumor microenvironment to enhance immunotherapy for pancreatic cancer.
    Yao Z; Qi C; Zhang F; Yao H; Wang C; Cao X; Zhao C; Wang Z; Qi M; Yao C; Wang X; Xia H
    Acta Biomater; 2024 Jan; 173():365-377. PubMed ID: 37890815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunovirotherapy with measles virus strains in combination with anti-PD-1 antibody blockade enhances antitumor activity in glioblastoma treatment.
    Hardcastle J; Mills L; Malo CS; Jin F; Kurokawa C; Geekiyanage H; Schroeder M; Sarkaria J; Johnson AJ; Galanis E
    Neuro Oncol; 2017 Apr; 19(4):493-502. PubMed ID: 27663389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer.
    Feig C; Jones JO; Kraman M; Wells RJ; Deonarine A; Chan DS; Connell CM; Roberts EW; Zhao Q; Caballero OL; Teichmann SA; Janowitz T; Jodrell DI; Tuveson DA; Fearon DT
    Proc Natl Acad Sci U S A; 2013 Dec; 110(50):20212-7. PubMed ID: 24277834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined Blockade of IL6 and PD-1/PD-L1 Signaling Abrogates Mutual Regulation of Their Immunosuppressive Effects in the Tumor Microenvironment.
    Tsukamoto H; Fujieda K; Miyashita A; Fukushima S; Ikeda T; Kubo Y; Senju S; Ihn H; Nishimura Y; Oshiumi H
    Cancer Res; 2018 Sep; 78(17):5011-5022. PubMed ID: 29967259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combination anti-CXCR4 and anti-PD-1 immunotherapy provides survival benefit in glioblastoma through immune cell modulation of tumor microenvironment.
    Wu A; Maxwell R; Xia Y; Cardarelli P; Oyasu M; Belcaid Z; Kim E; Hung A; Luksik AS; Garzon-Muvdi T; Jackson CM; Mathios D; Theodros D; Cogswell J; Brem H; Pardoll DM; Lim M
    J Neurooncol; 2019 Jun; 143(2):241-249. PubMed ID: 31025274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local Targeting of NAD
    Li M; Kirtane AR; Kiyokawa J; Nagashima H; Lopes A; Tirmizi ZA; Lee CK; Traverso G; Cahill DP; Wakimoto H
    Cancer Res; 2020 Nov; 80(22):5024-5034. PubMed ID: 32998997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glioblastoma-Derived IL6 Induces Immunosuppressive Peripheral Myeloid Cell PD-L1 and Promotes Tumor Growth.
    Lamano JB; Lamano JB; Li YD; DiDomenico JD; Choy W; Veliceasa D; Oyon DE; Fakurnejad S; Ampie L; Kesavabhotla K; Kaur R; Kaur G; Biyashev D; Unruh DJ; Horbinski CM; James CD; Parsa AT; Bloch O
    Clin Cancer Res; 2019 Jun; 25(12):3643-3657. PubMed ID: 30824583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application prospect of peptide-modified nano targeting drug delivery system combined with PD-1/PD-L1 based immune checkpoint blockade in glioblastoma.
    Song P; Zhao X; Xiao S
    Int J Pharm; 2020 Nov; 589():119865. PubMed ID: 32919004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TIGIT and PD-1 Immune Checkpoint Pathways Are Associated With Patient Outcome and Anti-Tumor Immunity in Glioblastoma.
    Raphael I; Kumar R; McCarl LH; Shoger K; Wang L; Sandlesh P; Sneiderman CT; Allen J; Zhai S; Campagna ML; Foster A; Bruno TC; Agnihotri S; Hu B; Castro BA; Lieberman FS; Broniscer A; Diaz AA; Amankulor NM; Rajasundaram D; Pollack IF; Kohanbash G
    Front Immunol; 2021; 12():637146. PubMed ID: 34025646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomas.
    Flores-Toro JA; Luo D; Gopinath A; Sarkisian MR; Campbell JJ; Charo IF; Singh R; Schall TJ; Datta M; Jain RK; Mitchell DA; Harrison JK
    Proc Natl Acad Sci U S A; 2020 Jan; 117(2):1129-1138. PubMed ID: 31879345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.