These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38360303)

  • 21. Immune responses to ZnO nanoparticles are modulated by season and environmental temperature in the blue mussels Mytilus edulis.
    Wu F; Sokolova IM
    Sci Total Environ; 2021 Dec; 801():149786. PubMed ID: 34467929
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chronic environmental stress enhances tolerance to seasonal gradual warming in marine mussels.
    Marigómez I; Múgica M; Izagirre U; Sokolova IM
    PLoS One; 2017; 12(3):e0174359. PubMed ID: 28333994
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biochemical impacts of Hg in Mytilus galloprovincialis under present and predicted warming scenarios.
    Coppola F; Almeida Â; Henriques B; Soares AMVM; Figueira E; Pereira E; Freitas R
    Sci Total Environ; 2017 Dec; 601-602():1129-1138. PubMed ID: 28599369
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota.
    Constable AJ; Melbourne-Thomas J; Corney SP; Arrigo KR; Barbraud C; Barnes DK; Bindoff NL; Boyd PW; Brandt A; Costa DP; Davidson AT; Ducklow HW; Emmerson L; Fukuchi M; Gutt J; Hindell MA; Hofmann EE; Hosie GW; Iida T; Jacob S; Johnston NM; Kawaguchi S; Kokubun N; Koubbi P; Lea MA; Makhado A; Massom RA; Meiners K; Meredith MP; Murphy EJ; Nicol S; Reid K; Richerson K; Riddle MJ; Rintoul SR; Smith WO; Southwell C; Stark JS; Sumner M; Swadling KM; Takahashi KT; Trathan PN; Welsford DC; Weimerskirch H; Westwood KJ; Wienecke BC; Wolf-Gladrow D; Wright SW; Xavier JC; Ziegler P
    Glob Chang Biol; 2014 Oct; 20(10):3004-25. PubMed ID: 24802817
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chapter 1. Impacts of the oceans on climate change.
    Reid PC; Fischer AC; Lewis-Brown E; Meredith MP; Sparrow M; Andersson AJ; Antia A; Bates NR; Bathmann U; Beaugrand G; Brix H; Dye S; Edwards M; Furevik T; Gangstø R; Hátún H; Hopcroft RR; Kendall M; Kasten S; Keeling R; Le Quéré C; Mackenzie FT; Malin G; Mauritzen C; Olafsson J; Paull C; Rignot E; Shimada K; Vogt M; Wallace C; Wang Z; Washington R
    Adv Mar Biol; 2009; 56():1-150. PubMed ID: 19895974
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Does pre-exposure to warming conditions increase Mytilus galloprovincialis tolerance to Hg contamination?
    Freitas R; Coppola F; Henriques B; Wrona F; Figueira E; Pereira E; Soares AMVM
    Comp Biochem Physiol C Toxicol Pharmacol; 2017 Dec; 203():1-11. PubMed ID: 28965928
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of medium-term exposure to elevated pCO(2) levels on the physiological energetics of the mussel Mytilus chilensis.
    Navarro JM; Torres R; Acuña K; Duarte C; Manriquez PH; Lardies M; Lagos NA; Vargas C; Aguilera V
    Chemosphere; 2013 Jan; 90(3):1242-8. PubMed ID: 23079160
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CO
    Zhao X; Han Y; Chen B; Xia B; Qu K; Liu G
    Chemosphere; 2020 Mar; 243():125415. PubMed ID: 31770697
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ocean acidification and pathogen exposure modulate the immune response of the edible mussel Mytilus chilensis.
    Castillo N; Saavedra LM; Vargas CA; Gallardo-Escárate C; Détrée C
    Fish Shellfish Immunol; 2017 Nov; 70():149-155. PubMed ID: 28870859
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physiological energetics of the thick shell mussel Mytilus coruscus exposed to seawater acidification and thermal stress.
    Wang Y; Li L; Hu M; Lu W
    Sci Total Environ; 2015 May; 514():261-72. PubMed ID: 25666286
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antarctic Futures: An Assessment of Climate-Driven Changes in Ecosystem Structure, Function, and Service Provisioning in the Southern Ocean.
    Rogers AD; Frinault BAV; Barnes DKA; Bindoff NL; Downie R; Ducklow HW; Friedlaender AS; Hart T; Hill SL; Hofmann EE; Linse K; McMahon CR; Murphy EJ; Pakhomov EA; Reygondeau G; Staniland IJ; Wolf-Gladrow DA; Wright RM
    Ann Rev Mar Sci; 2020 Jan; 12():87-120. PubMed ID: 31337252
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential impacts of ocean acidification and warming on winter and summer progeny of a coastal squid (Loligo vulgaris).
    Rosa R; Trübenbach K; Pimentel MS; Boavida-Portugal J; Faleiro F; Baptista M; Dionísio G; Calado R; Pörtner HO; Repolho T
    J Exp Biol; 2014 Feb; 217(Pt 4):518-25. PubMed ID: 24523499
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chromosome-Level Genome Assembly of the Blue Mussel
    Gallardo-Escárate C; Valenzuela-Muñoz V; Nuñez-Acuña G; Valenzuela-Miranda D; Tapia FJ; Yévenes M; Gajardo G; Toro JE; Oyarzún PA; Arriagada G; Novoa B; Figueras A; Roberts S; Gerdol M
    Genes (Basel); 2023 Apr; 14(4):. PubMed ID: 37107634
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Climate change and the marine ecosystem of the western Antarctic Peninsula.
    Clarke A; Murphy EJ; Meredith MP; King JC; Peck LS; Barnes DK; Smith RC
    Philos Trans R Soc Lond B Biol Sci; 2007 Jan; 362(1477):149-66. PubMed ID: 17405211
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antioxidant responses of the mussel Mytilus coruscus co-exposed to ocean acidification, hypoxia and warming.
    Khan FU; Chen H; Gu H; Wang T; Dupont S; Kong H; Shang Y; Wang X; Lu W; Hu M; Wang Y
    Mar Pollut Bull; 2021 Jan; 162():111869. PubMed ID: 33256964
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The discovery of new deep-sea hydrothermal vent communities in the southern ocean and implications for biogeography.
    Rogers AD; Tyler PA; Connelly DP; Copley JT; James R; Larter RD; Linse K; Mills RA; Garabato AN; Pancost RD; Pearce DA; Polunin NV; German CR; Shank T; Boersch-Supan PH; Alker BJ; Aquilina A; Bennett SA; Clarke A; Dinley RJ; Graham AG; Green DR; Hawkes JA; Hepburn L; Hilario A; Huvenne VA; Marsh L; Ramirez-Llodra E; Reid WD; Roterman CN; Sweeting CJ; Thatje S; Zwirglmaier K
    PLoS Biol; 2012 Jan; 10(1):e1001234. PubMed ID: 22235194
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ocean acidification increases susceptibility to sub-zero air temperatures in ecosystem engineers and limits poleward range shifts.
    Thyrring J; Macleod CD; Marshall KE; Kennedy J; Tremblay R; Harley CDG
    Elife; 2023 Apr; 12():. PubMed ID: 37039622
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ocean circulation off east Antarctica affects ecosystem structure and sea-ice extent.
    Nicol S; Pauly T; Bindoff NL; Wright S; Thiele D; Hosie GW; Strutton PG; Woehler E
    Nature; 2000 Aug; 406(6795):504-7. PubMed ID: 10952309
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ocean acidification has little effect on developmental thermal windows of echinoderms from Antarctica to the tropics.
    Karelitz SE; Uthicke S; Foo SA; Barker MF; Byrne M; Pecorino D; Lamare MD
    Glob Chang Biol; 2017 Feb; 23(2):657-672. PubMed ID: 27497050
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptomic response of the Antarctic pteropod Limacina helicina antarctica to ocean acidification.
    Johnson KM; Hofmann GE
    BMC Genomics; 2017 Oct; 18(1):812. PubMed ID: 29061120
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.