These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 38360810)

  • 1. Spatial quasi-bound states of Dirac electrons in graphene monolayer.
    Miniya M; Oubram O; El Hachimi AG; Gaggero-Sager LM
    Sci Rep; 2024 Feb; 14(1):3859. PubMed ID: 38360810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quasibound states in single-layer graphene quantum rings.
    Dinh TDL; Nguyen HC; Nguyen VL
    J Phys Condens Matter; 2018 Aug; 30(31):315501. PubMed ID: 29947617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical properties of Dirac electrons in a parabolic well.
    Kim SC; Lee JW; Yang SR
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6345-8. PubMed ID: 24205658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anisotropy induced localization of pseudo-relativistic spin states in graphene double quantum wire structures.
    Villegas CE; Tavares MR; Marques GE
    Nanotechnology; 2010 Sep; 21(36):365401. PubMed ID: 20705968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designer Dirac fermions and topological phases in molecular graphene.
    Gomes KK; Mar W; Ko W; Guinea F; Manoharan HC
    Nature; 2012 Mar; 483(7389):306-10. PubMed ID: 22422264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finger-gate manipulated quantum transport in Dirac materials.
    Kleftogiannis I; Tang CS; Cheng SJ
    J Phys Condens Matter; 2015 May; 27(20):205302. PubMed ID: 25950153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonant, non-resonant and anomalous states of Dirac electrons in a parabolic well in the presence of magnetic fields.
    Kim SC; Lee JW; Eric Yang SR
    J Phys Condens Matter; 2012 Dec; 24(49):495302. PubMed ID: 23137993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dirac electrons in the presence of a matrix potential barrier: application to graphene and topological insulators.
    Erementchouk M; Mazumder P; Khan MA; Leuenberger MN
    J Phys Condens Matter; 2016 Mar; 28(11):115501. PubMed ID: 26902304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable wavevector filtering in borophane based normal metal-barrier-normal metal junctions.
    Das P; De Sarkar S; Ghosh AK
    J Phys Condens Matter; 2020 May; 32(23):235301. PubMed ID: 32031999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-layer and bilayer graphene superlattices: collimation, additional Dirac points and Dirac lines.
    Barbier M; Vasilopoulos P; Peeters FM
    Philos Trans A Math Phys Eng Sci; 2010 Dec; 368(1932):5499-524. PubMed ID: 21041227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects analogous to the Kekulé distortion induced by pseudospin polarization in graphene nanoribbons: confinement and coupling by breakdown of chiral correlation.
    Mendoza M; López LIA
    J Phys Condens Matter; 2022 Jun; 34(33):. PubMed ID: 35667369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropic transport of normal metal-barrier-normal metal junctions in monolayer phosphorene.
    De Sarkar S; Agarwal A; Sengupta K
    J Phys Condens Matter; 2017 Jul; 29(28):285601. PubMed ID: 28530632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of the thermoelectric properties in bilayer graphene structures induced by Fano resonances.
    Briones-Torres JA; Pérez-Álvarez R; Molina-Valdovinos S; Rodríguez-Vargas I
    Sci Rep; 2021 Jul; 11(1):13872. PubMed ID: 34230518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impurity-Induced Magnetization of Graphene.
    Inglot M; Szczepański T
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Massless Dirac fermions in graphene under an external periodic magnetic field.
    Liu S; Nurbawono A; Guo N; Zhang C
    J Phys Condens Matter; 2013 Oct; 25(39):395302. PubMed ID: 23999085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vertical transport in graphene-hexagonal boron nitride heterostructure devices.
    Bruzzone S; Logoteta D; Fiori G; Iannaccone G
    Sci Rep; 2015 Sep; 5():14519. PubMed ID: 26415656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dirac Fermion Cloning, Moiré Flat Bands, and Magic Lattice Constants in Epitaxial Monolayer Graphene.
    Lu Q; Le C; Zhang X; Cook J; He X; Zarenia M; Vaninger M; Miceli PF; Singh DJ; Liu C; Qin H; Chiang TC; Chiu CK; Vignale G; Bian G
    Adv Mater; 2022 Jul; 34(26):e2200625. PubMed ID: 35446987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transfer matrix approach to circular graphene quantum dots.
    Nguyen HC; Nguyen NT; Nguyen VL
    J Phys Condens Matter; 2016 Jul; 28(27):275301. PubMed ID: 27214382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversal of Klein reflection by magnetic barriers in bilayer graphene.
    Agrawal Garg N; Grover S; Ghosh S; Sharma M
    J Phys Condens Matter; 2012 May; 24(17):175003. PubMed ID: 22481035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic Kronig-Penney-type graphene superlattices: finite energy Dirac points with anisotropic velocity renormalization.
    Qui Le V; Huy Pham C; Lien Nguyen V
    J Phys Condens Matter; 2012 Aug; 24(34):345502. PubMed ID: 22850460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.