These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 38360881)

  • 1. Evaluation of single-sample network inference methods for precision oncology.
    Deschildre J; Vandemoortele B; Loers JU; De Preter K; Vermeirssen V
    NPJ Syst Biol Appl; 2024 Feb; 10(1):18. PubMed ID: 38360881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. lionessR: single sample network inference in R.
    Kuijjer ML; Hsieh PH; Quackenbush J; Glass K
    BMC Cancer; 2019 Oct; 19(1):1003. PubMed ID: 31653243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SWEET: a single-sample network inference method for deciphering individual features in disease.
    Chen HH; Hsueh CW; Lee CH; Hao TY; Tu TY; Chang LY; Lee JC; Lin CY
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36719112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constructing cancer patient-specific and group-specific gene networks with multi-omics data.
    Lee W; Huang DS; Han K
    BMC Med Genomics; 2020 Aug; 13(Suppl 6):81. PubMed ID: 32854705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Personalized characterization of diseases using sample-specific networks.
    Liu X; Wang Y; Ji H; Aihara K; Chen L
    Nucleic Acids Res; 2016 Dec; 44(22):e164. PubMed ID: 27596597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data.
    Chen S; Mar JC
    BMC Bioinformatics; 2018 Jun; 19(1):232. PubMed ID: 29914350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disease characterization using a partial correlation-based sample-specific network.
    Huang Y; Chang X; Zhang Y; Chen L; Liu X
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32422654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid deep learning framework for gene regulatory network inference from single-cell transcriptomic data.
    Zhao M; He W; Tang J; Zou Q; Guo F
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35062026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New insights for precision treatment of glioblastoma from analysis of single-cell lncRNA expression.
    Meng Q; Zhang Y; Li G; Li Y; Xie H; Chen X
    J Cancer Res Clin Oncol; 2021 Jul; 147(7):1881-1895. PubMed ID: 33693962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring latent temporal progression and regulatory networks from cross-sectional transcriptomic data of cancer samples.
    Sun X; Zhang J; Nie Q
    PLoS Comput Biol; 2021 Mar; 17(3):e1008379. PubMed ID: 33667222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Node-based learning of differential networks from multi-platform gene expression data.
    Ou-Yang L; Zhang XF; Wu M; Li XL
    Methods; 2017 Oct; 129():41-49. PubMed ID: 28579401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-cell network biology for resolving cellular heterogeneity in human diseases.
    Cha J; Lee I
    Exp Mol Med; 2020 Nov; 52(11):1798-1808. PubMed ID: 33244151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Single Sample Network Inference Methods for Metabolomics-Based Systems Medicine.
    Jahagirdar S; Saccenti E
    J Proteome Res; 2021 Jan; 20(1):932-949. PubMed ID: 33267585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene expression complex networks: synthesis, identification, and analysis.
    Lopes FM; Cesar RM; Costa Lda F
    J Comput Biol; 2011 Oct; 18(10):1353-67. PubMed ID: 21548810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-specific network constructed by single-cell RNA sequencing data.
    Dai H; Li L; Zeng T; Chen L
    Nucleic Acids Res; 2019 Jun; 47(11):e62. PubMed ID: 30864667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance assessment of sample-specific network control methods for bulk and single-cell biological data analysis.
    Guo WF; Yu X; Shi QQ; Liang J; Zhang SW; Zeng T
    PLoS Comput Biol; 2021 May; 17(5):e1008962. PubMed ID: 33956788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian inference of hub nodes across multiple networks.
    Kim J; Do KA; Ha MJ; Peterson CB
    Biometrics; 2019 Mar; 75(1):172-182. PubMed ID: 30051914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel network control model for identifying personalized driver genes in cancer.
    Guo WF; Zhang SW; Zeng T; Li Y; Gao J; Chen L
    PLoS Comput Biol; 2019 Nov; 15(11):e1007520. PubMed ID: 31765387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust gene network analysis reveals alteration of the STAT5a network as a hallmark of prostate cancer.
    Reddy A; Huang CC; Liu H; Delisi C; Nevalainen MT; Szalma S; Bhanot G
    Genome Inform; 2010; 24():139-53. PubMed ID: 22081596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstructing directed gene regulatory network by only gene expression data.
    Zhang L; Feng XK; Ng YK; Li SC
    BMC Genomics; 2016 Aug; 17 Suppl 4(Suppl 4):430. PubMed ID: 27556418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.