These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 38360885)

  • 1. Chp1 is a dedicated chaperone at the ribosome that safeguards eEF1A biogenesis.
    Minoia M; Quintana-Cordero J; Jetzinger K; Kotan IE; Turnbull KJ; Ciccarelli M; Masser AE; Liebers D; Gouarin E; Czech M; Hauryliuk V; Bukau B; Kramer G; Andréasson C
    Nat Commun; 2024 Feb; 15(1):1382. PubMed ID: 38360885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chaperone Interactions at the Ribosome.
    Deuerling E; Gamerdinger M; Kreft SG
    Cold Spring Harb Perspect Biol; 2019 Nov; 11(11):. PubMed ID: 30833456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zinc-finger protein Zpr1 is a bespoke chaperone essential for eEF1A biogenesis.
    Sabbarini IM; Reif D; McQuown AJ; Nelliat AR; Prince J; Membreno BS; Wu CC; Murray AW; Denic V
    Mol Cell; 2023 Jan; 83(2):252-265.e13. PubMed ID: 36630955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disome-seq reveals widespread ribosome collisions that promote cotranslational protein folding.
    Zhao T; Chen YM; Li Y; Wang J; Chen S; Gao N; Qian W
    Genome Biol; 2021 Jan; 22(1):16. PubMed ID: 33402206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dedicated chaperones coordinate co-translational regulation of ribosomal protein production with ribosome assembly to preserve proteostasis.
    Pillet B; Méndez-Godoy A; Murat G; Favre S; Stumpe M; Falquet L; Kressler D
    Elife; 2022 Mar; 11():. PubMed ID: 35357307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Zpr1 co-chaperone mediates folding of eukaryotic translation elongation factor 1A via a GTPase cycle.
    McQuown AJ; Nelliat AR; Reif D; Sabbarini IM; Membreno BS; Wu CC; Denic V
    Mol Cell; 2023 Sep; 83(17):3108-3122.e13. PubMed ID: 37597513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dual function for chaperones SSB-RAC and the NAC nascent polypeptide-associated complex on ribosomes.
    Koplin A; Preissler S; Ilina Y; Koch M; Scior A; Erhardt M; Deuerling E
    J Cell Biol; 2010 Apr; 189(1):57-68. PubMed ID: 20368618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The nascent polypeptide-associated complex is a key regulator of proteostasis.
    Kirstein-Miles J; Scior A; Deuerling E; Morimoto RI
    EMBO J; 2013 May; 32(10):1451-68. PubMed ID: 23604074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Principles of cotranslational ubiquitination and quality control at the ribosome.
    Duttler S; Pechmann S; Frydman J
    Mol Cell; 2013 May; 50(3):379-93. PubMed ID: 23583075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How Does the Ribosome Fold the Proteome?
    Cassaignau AME; Cabrita LD; Christodoulou J
    Annu Rev Biochem; 2020 Jun; 89():389-415. PubMed ID: 32569518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribosome-associated chaperones as key players in proteostasis.
    Preissler S; Deuerling E
    Trends Biochem Sci; 2012 Jul; 37(7):274-83. PubMed ID: 22503700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nascent Polypeptide Domain Topology and Elongation Rate Direct the Cotranslational Hierarchy of Hsp70 and TRiC/CCT.
    Stein KC; Kriel A; Frydman J
    Mol Cell; 2019 Sep; 75(6):1117-1130.e5. PubMed ID: 31400849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defining the specificity of cotranslationally acting chaperones by systematic analysis of mRNAs associated with ribosome-nascent chain complexes.
    del Alamo M; Hogan DJ; Pechmann S; Albanese V; Brown PO; Frydman J
    PLoS Biol; 2011 Jul; 9(7):e1001100. PubMed ID: 21765803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of the eukaryotic elongation factor 1A with newly synthesized polypeptides.
    Hotokezaka Y; Tobben U; Hotokezaka H; Van Leyen K; Beatrix B; Smith DH; Nakamura T; Wiedmann M
    J Biol Chem; 2002 May; 277(21):18545-51. PubMed ID: 11893745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A ribosome-associated chaperone enables substrate triage in a cotranslational protein targeting complex.
    Hsieh HH; Lee JH; Chandrasekar S; Shan SO
    Nat Commun; 2020 Nov; 11(1):5840. PubMed ID: 33203865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chaperone-like activity of mammalian elongation factor eEF1A: renaturation of aminoacyl-tRNA synthetases.
    Lukash TO; Turkivska HV; Negrutskii BS; El'skaya AV
    Int J Biochem Cell Biol; 2004 Jul; 36(7):1341-7. PubMed ID: 15109577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coordination of eukaryotic translation elongation factor 1A (eEF1A) function in actin organization and translation elongation by the guanine nucleotide exchange factor eEF1Balpha.
    Pittman YR; Kandl K; Lewis M; Valente L; Kinzy TG
    J Biol Chem; 2009 Feb; 284(7):4739-47. PubMed ID: 19095653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual Role of Ribosome-Binding Domain of NAC as a Potent Suppressor of Protein Aggregation and Aging-Related Proteinopathies.
    Shen K; Gamerdinger M; Chan R; Gense K; Martin EM; Sachs N; Knight PD; Schlömer R; Calabrese AN; Stewart KL; Leiendecker L; Baghel A; Radford SE; Frydman J; Deuerling E
    Mol Cell; 2019 May; 74(4):729-741.e7. PubMed ID: 30982745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-equilibrium dynamics of a nascent polypeptide during translation suppress its misfolding.
    Alexander LM; Goldman DH; Wee LM; Bustamante C
    Nat Commun; 2019 Jun; 10(1):2709. PubMed ID: 31221966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The stop-and-go traffic regulating protein biogenesis: How translation kinetics controls proteostasis.
    Stein KC; Frydman J
    J Biol Chem; 2019 Feb; 294(6):2076-2084. PubMed ID: 30504455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.