These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 38360980)
1. A Spectral Method for Identifiable Grade of Membership Analysis with Binary Responses. Chen L; Gu Y Psychometrika; 2024 Jun; 89(2):626-657. PubMed ID: 38360980 [TBL] [Abstract][Full Text] [Related]
2. Restricted Latent Class Models for Nominal Response Data: Identifiability and Estimation. Liu Y; Culpepper SA Psychometrika; 2024 Jun; 89(2):592-625. PubMed ID: 38114767 [TBL] [Abstract][Full Text] [Related]
3. A Tensor-EM Method for Large-Scale Latent Class Analysis with Binary Responses. Zeng Z; Gu Y; Xu G Psychometrika; 2023 Jun; 88(2):580-612. PubMed ID: 36183034 [TBL] [Abstract][Full Text] [Related]
4. Part 2. Development of Enhanced Statistical Methods for Assessing Health Effects Associated with an Unknown Number of Major Sources of Multiple Air Pollutants. Park ES; Symanski E; Han D; Spiegelman C Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):51-113. PubMed ID: 26333239 [TBL] [Abstract][Full Text] [Related]
5. On the Identifiability of Diagnostic Classification Models. Fang G; Liu J; Ying Z Psychometrika; 2019 Mar; 84(1):19-40. PubMed ID: 30673967 [TBL] [Abstract][Full Text] [Related]
6. A Note on Exploratory Item Factor Analysis by Singular Value Decomposition. Zhang H; Chen Y; Li X Psychometrika; 2020 Jun; 85(2):358-372. PubMed ID: 32451743 [TBL] [Abstract][Full Text] [Related]
7. Going Deep in Diagnostic Modeling: Deep Cognitive Diagnostic Models (DeepCDMs). Gu Y Psychometrika; 2024 Mar; 89(1):118-150. PubMed ID: 38079062 [TBL] [Abstract][Full Text] [Related]
8. Joint Maximum Likelihood Estimation for High-Dimensional Exploratory Item Factor Analysis. Chen Y; Li X; Zhang S Psychometrika; 2019 Mar; 84(1):124-146. PubMed ID: 30456747 [TBL] [Abstract][Full Text] [Related]
9. Bayesian inference of risk ratio of two proportions using a double sampling scheme. Rahardja D; Young DM J Biopharm Stat; 2011 May; 21(3):393-404. PubMed ID: 21442515 [TBL] [Abstract][Full Text] [Related]
10. New Paradigm of Identifiable General-response Cognitive Diagnostic Models: Beyond Categorical Data. Lee S; Gu Y Psychometrika; 2024 Dec; 89(4):1304-1336. PubMed ID: 38967857 [TBL] [Abstract][Full Text] [Related]
11. Bayesian inference for multivariate probit model with latent envelope. Lee K; Park Y Biometrics; 2024 Jul; 80(3):. PubMed ID: 38949889 [TBL] [Abstract][Full Text] [Related]
12. A Sparse Latent Class Model for Cognitive Diagnosis. Chen Y; Culpepper S; Liang F Psychometrika; 2020 Mar; 85(1):121-153. PubMed ID: 31927684 [TBL] [Abstract][Full Text] [Related]
13. Sufficient and Necessary Conditions for the Identifiability of DINA Models with Polytomous Responses. Lin M; Xu G Psychometrika; 2024 Jun; 89(2):717-740. PubMed ID: 38517594 [TBL] [Abstract][Full Text] [Related]
14. Intermittent faking of personality profiles in high-stakes assessments: A grade of membership analysis. Brown A; Böckenholt U Psychol Methods; 2022 Oct; 27(5):895-916. PubMed ID: 35007104 [TBL] [Abstract][Full Text] [Related]
15. An Exploratory Diagnostic Model for Ordinal Responses with Binary Attributes: Identifiability and Estimation. Culpepper SA Psychometrika; 2019 Dec; 84(4):921-940. PubMed ID: 31432312 [TBL] [Abstract][Full Text] [Related]
16. Identifiability of Hidden Markov Models for Learning Trajectories in Cognitive Diagnosis. Liu Y; Culpepper SA; Chen Y Psychometrika; 2023 Jun; 88(2):361-386. PubMed ID: 36797538 [TBL] [Abstract][Full Text] [Related]
17. Performance of the Grade of Membership Model Under a Variety of Sample Sizes, Group Size Ratios, and Differential Group Response Probabilities for Dichotomous Indicators. Holmes Finch W Educ Psychol Meas; 2021 Jun; 81(3):523-548. PubMed ID: 33994562 [TBL] [Abstract][Full Text] [Related]
18. A Note on Weaker Conditions for Identifying Restricted Latent Class Models for Binary Responses. Culpepper SA Psychometrika; 2023 Mar; 88(1):158-174. PubMed ID: 35896935 [TBL] [Abstract][Full Text] [Related]
19. DESCRIBING DISABILITY THROUGH INDIVIDUAL-LEVEL MIXTURE MODELS FOR MULTIVARIATE BINARY DATA. Erosheva EA; Fienberg SE; Joutard C Ann Appl Stat; 2007; 1(2):346-384. PubMed ID: 21687832 [TBL] [Abstract][Full Text] [Related]
20. Mixture models for single-cell assays with applications to vaccine studies. Finak G; McDavid A; Chattopadhyay P; Dominguez M; De Rosa S; Roederer M; Gottardo R Biostatistics; 2014 Jan; 15(1):87-101. PubMed ID: 23887981 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]