These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Modeling Alzheimer's Disease by Induced Pluripotent Stem Cells Carrying APP D678H Mutation. Chang KH; Lee-Chen GJ; Huang CC; Lin JL; Chen YJ; Wei PC; Lo YS; Yao CF; Kuo MW; Chen CM Mol Neurobiol; 2019 Jun; 56(6):3972-3983. PubMed ID: 30238389 [TBL] [Abstract][Full Text] [Related]
6. Alzheimer's disease-related amyloid-β induces synaptotoxicity in human iPS cell-derived neurons. Nieweg K; Andreyeva A; van Stegen B; Tanriöver G; Gottmann K Cell Death Dis; 2015 Apr; 6(4):e1709. PubMed ID: 25837485 [TBL] [Abstract][Full Text] [Related]
7. Cholesterol Metabolism Is a Druggable Axis that Independently Regulates Tau and Amyloid-β in iPSC-Derived Alzheimer's Disease Neurons. van der Kant R; Langness VF; Herrera CM; Williams DA; Fong LK; Leestemaker Y; Steenvoorden E; Rynearson KD; Brouwers JF; Helms JB; Ovaa H; Giera M; Wagner SL; Bang AG; Goldstein LSB Cell Stem Cell; 2019 Mar; 24(3):363-375.e9. PubMed ID: 30686764 [TBL] [Abstract][Full Text] [Related]
8. Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells. Israel MA; Yuan SH; Bardy C; Reyna SM; Mu Y; Herrera C; Hefferan MP; Van Gorp S; Nazor KL; Boscolo FS; Carson CT; Laurent LC; Marsala M; Gage FH; Remes AM; Koo EH; Goldstein LS Nature; 2012 Jan; 482(7384):216-20. PubMed ID: 22278060 [TBL] [Abstract][Full Text] [Related]
9. The familial Alzheimer's disease APPV717I mutation alters APP processing and Tau expression in iPSC-derived neurons. Muratore CR; Rice HC; Srikanth P; Callahan DG; Shin T; Benjamin LN; Walsh DM; Selkoe DJ; Young-Pearse TL Hum Mol Genet; 2014 Jul; 23(13):3523-36. PubMed ID: 24524897 [TBL] [Abstract][Full Text] [Related]
10. Pathological manifestation of the induced pluripotent stem cell-derived cortical neurons from an early-onset Alzheimer's disease patient carrying a presenilin-1 mutation (S170F). Li L; Kim HJ; Roh JH; Kim M; Koh W; Kim Y; Heo H; Chung J; Nakanishi M; Yoon T; Hong CP; Seo SW; Na DL; Song J Cell Prolif; 2020 Apr; 53(4):e12798. PubMed ID: 32216003 [TBL] [Abstract][Full Text] [Related]
11. The participation of insulin-like growth factor-binding protein 3 released by astrocytes in the pathology of Alzheimer's disease. Watanabe K; Uemura K; Asada M; Maesako M; Akiyama H; Shimohama S; Takahashi R; Kinoshita A Mol Brain; 2015 Dec; 8(1):82. PubMed ID: 26637371 [TBL] [Abstract][Full Text] [Related]
12. N-butylidenephthalide attenuates Alzheimer's disease-like cytopathy in Down syndrome induced pluripotent stem cell-derived neurons. Chang CY; Chen SM; Lu HE; Lai SM; Lai PS; Shen PW; Chen PY; Shen CI; Harn HJ; Lin SZ; Hwang SM; Su HL Sci Rep; 2015 Mar; 5():8744. PubMed ID: 25735452 [TBL] [Abstract][Full Text] [Related]
13. β-Amyloid species production and tau phosphorylation in iPSC-neurons with reference to neuropathologically characterized matched donor brains. Oakley DH; Chung M; Abrha S; Hyman BT; Frosch MP J Neuropathol Exp Neurol; 2024 Sep; 83(9):772-782. PubMed ID: 38874454 [TBL] [Abstract][Full Text] [Related]
14. Modeling amyloid beta and tau pathology in human cerebral organoids. Gonzalez C; Armijo E; Bravo-Alegria J; Becerra-Calixto A; Mays CE; Soto C Mol Psychiatry; 2018 Dec; 23(12):2363-2374. PubMed ID: 30171212 [TBL] [Abstract][Full Text] [Related]
15. Synaptic Mitochondria: An Early Target of Amyloid-β and Tau in Alzheimer's Disease. Torres AK; Jara C; Park-Kang HS; Polanco CM; Tapia D; Alarcón F; de la Peña A; Llanquinao J; Vargas-Mardones G; Indo JA; Inestrosa NC; Tapia-Rojas C J Alzheimers Dis; 2021; 84(4):1391-1414. PubMed ID: 34719499 [TBL] [Abstract][Full Text] [Related]
16. Cell-type Dependent Alzheimer's Disease Phenotypes: Probing the Biology of Selective Neuronal Vulnerability. Muratore CR; Zhou C; Liao M; Fernandez MA; Taylor WM; Lagomarsino VN; Pearse RV; Rice HC; Negri JM; He A; Srikanth P; Callahan DG; Shin T; Zhou M; Bennett DA; Noggle S; Love JC; Selkoe DJ; Young-Pearse TL Stem Cell Reports; 2017 Dec; 9(6):1868-1884. PubMed ID: 29153990 [TBL] [Abstract][Full Text] [Related]
17. Physiological Aβ Concentrations Produce a More Biomimetic Representation of the Alzheimer's Disease Phenotype in iPSC Derived Human Neurons. Berry BJ; Smith AST; Long CJ; Martin CC; Hickman JJ ACS Chem Neurosci; 2018 Jul; 9(7):1693-1701. PubMed ID: 29746089 [TBL] [Abstract][Full Text] [Related]
18. Extracellular Forms of Aβ and Tau from iPSC Models of Alzheimer's Disease Disrupt Synaptic Plasticity. Hu NW; Corbett GT; Moore S; Klyubin I; O'Malley TT; Walsh DM; Livesey FJ; Rowan MJ Cell Rep; 2018 May; 23(7):1932-1938. PubMed ID: 29768194 [TBL] [Abstract][Full Text] [Related]
19. Tau facilitates Aβ-induced loss of mitochondrial membrane potential independent of cytosolic calcium fluxes in mouse cortical neurons. Pallo SP; Johnson GV Neurosci Lett; 2015 Jun; 597():32-7. PubMed ID: 25888814 [TBL] [Abstract][Full Text] [Related]
20. A three-dimensional human neural cell culture model of Alzheimer's disease. Choi SH; Kim YH; Hebisch M; Sliwinski C; Lee S; D'Avanzo C; Chen H; Hooli B; Asselin C; Muffat J; Klee JB; Zhang C; Wainger BJ; Peitz M; Kovacs DM; Woolf CJ; Wagner SL; Tanzi RE; Kim DY Nature; 2014 Nov; 515(7526):274-8. PubMed ID: 25307057 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]