These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38361256)

  • 1. Comparative anatomy of the spinneret musculature in cribellate and ecribellate spiders (Araneae).
    Kreuz J; Michalik P; Wolff JO
    J Morphol; 2024 Feb; 285(2):e21670. PubMed ID: 38361256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cribellate thread production as model for spider's spinneret kinematics.
    Weissbach M; Neugebauer M; Joel AC
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2021 Mar; 207(2):127-139. PubMed ID: 33483834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spidroin profiling of cribellate spiders provides insight into the evolution of spider prey capture strategies.
    Kono N; Nakamura H; Mori M; Tomita M; Arakawa K
    Sci Rep; 2020 Sep; 10(1):15721. PubMed ID: 32973264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cribellate thread production in spiders: Complex processing of nano-fibres into a functional capture thread.
    Joel AC; Kappel P; Adamova H; Baumgartner W; Scholz I
    Arthropod Struct Dev; 2015 Nov; 44(6 Pt A):568-73. PubMed ID: 26248293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spiders spinning electrically charged nano-fibres.
    Kronenberger K; Vollrath F
    Biol Lett; 2015 Jan; 11(1):20140813. PubMed ID: 25631231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The evolutionary history of cribellate orb-weaver capture thread spidroins.
    Correa-Garhwal SM; Baker RH; Clarke TH; Ayoub NA; Hayashi CY
    BMC Ecol Evol; 2022 Jul; 22(1):89. PubMed ID: 35810286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature fluctuations during embryonic development implicated in a naturally occurring instance of abnormal spinnerets in the spider Australomimetus maculosus (Araneae, Mimetidae).
    Townley MA; Harms D
    Arthropod Struct Dev; 2020 Jul; 57():100945. PubMed ID: 32361425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogeny of entelegyne spiders: affinities of the family Penestomidae (NEW RANK), generic phylogeny of Eresidae, and asymmetric rates of change in spinning organ evolution (Araneae, Araneoidea, Entelegynae).
    Miller JA; Carmichael A; Ramírez MJ; Spagna JC; Haddad CR; Rezác M; Johannesen J; Král J; Wang XP; Griswold CE
    Mol Phylogenet Evol; 2010 Jun; 55(3):786-804. PubMed ID: 20206276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological adaptation of the calamistrum to the cribellate spinning process in Deinopoidae (Uloboridae, Deinopidae).
    Joel AC; Scholz I; Orth L; Kappel P; Baumgartner W
    R Soc Open Sci; 2016 Feb; 3(2):150617. PubMed ID: 26998332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. -Comparative spigot ontogeny across the spider tree of life.
    Alfaro RE; Griswold CE; Miller KB
    PeerJ; 2018; 6():e4233. PubMed ID: 29362692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogenetic affinities of Phobetinus to other pirate spider genera (Araneae: Mimetidae) as indicated by spinning field morphology.
    Townley MA; Harms D; Benjamin SP
    Arthropod Struct Dev; 2013 Sep; 42(5):407-23. PubMed ID: 23680801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of Silk Anchor Structure as the Joint Effect of Spinning Behavior and Spinneret Morphology.
    Wolff JO; Michalik P; Ravelo AM; Herberstein ME; Ramírez MJ
    Integr Comp Biol; 2021 Oct; 61(4):1411-1431. PubMed ID: 33616646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstructing web evolution and spider diversification in the molecular era.
    Blackledge TA; Scharff N; Coddington JA; Szüts T; Wenzel JW; Hayashi CY; Agnarsson I
    Proc Natl Acad Sci U S A; 2009 Mar; 106(13):5229-34. PubMed ID: 19289848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Punctuated evolution of viscid silk in spider orb webs supported by mechanical behavior of wet cribellate silk.
    Piorkowski D; Blackledge TA
    Naturwissenschaften; 2017 Aug; 104(7-8):67. PubMed ID: 28752413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. More data, fewer shifts: molecular insights into the evolution of the spinning apparatus in non-orb-weaving spiders.
    Spagna JC; Gillespie RG
    Mol Phylogenet Evol; 2008 Jan; 46(1):347-68. PubMed ID: 17928240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fossil evidence for the origin of spider spinnerets, and a proposed arachnid order.
    Selden PA; Shear WA; Sutton MD
    Proc Natl Acad Sci U S A; 2008 Dec; 105(52):20781-5. PubMed ID: 19104044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Change of mechanical characteristics in spider silk capture threads after contact with prey.
    Baumgart L; Schaa EM; Menzel F; Joel AC
    Acta Biomater; 2022 Nov; 153():355-363. PubMed ID: 36167237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional trade-offs in cribellate silk mediated by spinning behavior.
    Michalik P; Piorkowski D; Blackledge TA; Ramírez MJ
    Sci Rep; 2019 Jun; 9(1):9092. PubMed ID: 31235797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of posterior Hox genes and opisthosomal appendage development in a mygalomorph spider.
    Janssen R; Pechmann M
    Dev Genes Evol; 2023 Dec; 233(2):107-121. PubMed ID: 37495828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and optical studies on selected web spinning spider silks.
    Karthikeyani R; Divya A; Mathavan T; Asath RM; Benial AM; Muthuchelian K
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 170():111-6. PubMed ID: 27423109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.