These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 38361266)
1. Shortening fire return interval predisposes west-central Canadian boreal peatlands to more rapid vegetation growth and transition to forest cover. Jones EA; Chasmer LE; Devito KJ; Hopkinson CD Glob Chang Biol; 2024 Feb; 30(2):e17185. PubMed ID: 38361266 [TBL] [Abstract][Full Text] [Related]
2. Peatland-fire interactions: A review of wildland fire feedbacks and interactions in Canadian boreal peatlands. Nelson K; Thompson D; Hopkinson C; Petrone R; Chasmer L Sci Total Environ; 2021 May; 769():145212. PubMed ID: 33486170 [TBL] [Abstract][Full Text] [Related]
3. Short-term effects of wildfire in boreal peatlands: Does fire mitigate the linear footprint of oil and gas exploration? Pinzon J; Dabros A; Riva F; Glasier JRN Ecol Appl; 2021 Apr; 31(3):e02281. PubMed ID: 33336476 [TBL] [Abstract][Full Text] [Related]
4. Low-severity fire as a mechanism of organic matter protection in global peatlands: Thermal alteration slows decomposition. Flanagan NE; Wang H; Winton S; Richardson CJ Glob Chang Biol; 2020 Jul; 26(7):3930-3946. PubMed ID: 32388914 [TBL] [Abstract][Full Text] [Related]
5. Landscape fires disproportionally affect high conservation value temperate peatlands, meadows, and deciduous forests, but only under low moisture conditions. Kirkland M; Atkinson PW; Pearce-Higgins JW; de Jong MC; Dowling TPF; Grummo D; Critchley M; Ashton-Butt A Sci Total Environ; 2023 Aug; 884():163849. PubMed ID: 37137369 [TBL] [Abstract][Full Text] [Related]
6. Biogeographic variability in wildfire severity and post-fire vegetation recovery across the European forests via remote sensing-derived spectral metrics. Nolè A; Rita A; Spatola MF; Borghetti M Sci Total Environ; 2022 Jun; 823():153807. PubMed ID: 35150679 [TBL] [Abstract][Full Text] [Related]
7. Fire regime of peatlands in the Angolan Highlands. Lourenco M; Woodborne S; Fitchett JM Environ Monit Assess; 2022 Nov; 195(1):78. PubMed ID: 36342572 [TBL] [Abstract][Full Text] [Related]
8. A modest increase in fire weather overcomes resistance to fire spread in recently burned boreal forests. Whitman E; Barber QE; Jain P; Parks SA; Guindon L; Thompson DK; Parisien MA Glob Chang Biol; 2024 Jun; 30(6):e17363. PubMed ID: 38864471 [TBL] [Abstract][Full Text] [Related]
9. Multidecadal vegetation transformations of a New Mexico ponderosa pine landscape after severe fires and aerial seeding. Wion AP; Stevens JT; Beeley K; Oertel R; Margolis EQ; Allen CD Ecol Appl; 2024 Sep; 34(6):e3008. PubMed ID: 39034303 [TBL] [Abstract][Full Text] [Related]
10. How do forest fires affect soil greenhouse gas emissions in upland boreal forests? A review. Ribeiro-Kumara C; Köster E; Aaltonen H; Köster K Environ Res; 2020 May; 184():109328. PubMed ID: 32163772 [TBL] [Abstract][Full Text] [Related]
11. Burn me twice, shame on who? Interactions between successive forest fires across a temperate mountain region. Harvey BJ; Donato DC; Turner MG Ecology; 2016 Sep; 97(9):2272-2282. PubMed ID: 27859087 [TBL] [Abstract][Full Text] [Related]
12. Remote sensing of vegetation conditions after post-fire mulch treatments. Vo VD; Kinoshita AM J Environ Manage; 2020 Apr; 260():109993. PubMed ID: 32090797 [TBL] [Abstract][Full Text] [Related]
13. Wildfire combustion and carbon stocks in the southern Canadian boreal forest: Implications for a warming world. Dieleman CM; Rogers BM; Potter S; Veraverbeke S; Johnstone JF; Laflamme J; Solvik K; Walker XJ; Mack MC; Turetsky MR Glob Chang Biol; 2020 Nov; 26(11):6062-6079. PubMed ID: 32529727 [TBL] [Abstract][Full Text] [Related]
14. Fire Distribution in Peninsular Malaysia, Sumatra and Borneo in 2015 with Special Emphasis on Peatland Fires. Miettinen J; Shi C; Liew SC Environ Manage; 2017 Oct; 60(4):747-757. PubMed ID: 28674917 [TBL] [Abstract][Full Text] [Related]
15. Smouldering fire in a nutrient-limited wetland ecosystem: Long-lasting changes in water and soil chemistry facilitate shrub expansion into a drained burned fen. Sulwiński M; Mętrak M; Wilk M; Suska-Malawska M Sci Total Environ; 2020 Dec; 746():141142. PubMed ID: 32739756 [TBL] [Abstract][Full Text] [Related]
16. Do multiple fires interact to affect vegetation structure in temperate eucalypt forests? Haslem A; Leonard SW; Bruce MJ; Christie F; Holland GJ; Kelly LT; MacHunter J; Bennett AF; Clarke MF; York A Ecol Appl; 2016 Dec; 26(8):2412-2421. PubMed ID: 27907257 [TBL] [Abstract][Full Text] [Related]
17. Forest restoration in a time of fire: perspectives from tall, wet eucalypt forests subject to stand-replacing wildfires. Lindenmayer DB; Bowd EJ; Gibbons P Philos Trans R Soc Lond B Biol Sci; 2023 Jan; 378(1867):20210082. PubMed ID: 36373929 [TBL] [Abstract][Full Text] [Related]
18. Can wildland fire management alter 21st-century subalpine fire and forests in Grand Teton National Park, Wyoming, USA? Hansen WD; Abendroth D; Rammer W; Seidl R; Turner MG Ecol Appl; 2020 Mar; 30(2):e02030. PubMed ID: 31674698 [TBL] [Abstract][Full Text] [Related]
19. Assessment of fire resilience in subtropical wetlands using high spatial resolution images. Simioni JPD; Guasselli LA; Belloli TF; Ramos RA Environ Monit Assess; 2022 May; 194(6):417. PubMed ID: 35536333 [TBL] [Abstract][Full Text] [Related]
20. Vegetation structure parameters determine high burn severity likelihood in different ecosystem types: A case study in a burned Mediterranean landscape. Fernández-Guisuraga JM; Suárez-Seoane S; García-Llamas P; Calvo L J Environ Manage; 2021 Jun; 288():112462. PubMed ID: 33831636 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]