BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 38361506)

  • 1. Review of machine learning for optical imaging of burn wound severity assessment.
    Wilson RH; Rowland R; Kennedy GT; Campbell C; Joe VC; Chin TL; Burmeister DM; Christy RJ; Durkin AJ
    J Biomed Opt; 2024 Feb; 29(2):020901. PubMed ID: 38361506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Burn wound classification model using spatial frequency-domain imaging and machine learning.
    Rowland R; Ponticorvo A; Baldado M; Kennedy GT; Burmeister DM; Christy RJ; Bernal NP; Durkin AJ
    J Biomed Opt; 2019 May; 24(5):1-9. PubMed ID: 31134769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Outlier detection and removal improves accuracy of machine learning approach to multispectral burn diagnostic imaging.
    Li W; Mo W; Zhang X; Squiers JJ; Lu Y; Sellke EW; Fan W; DiMaio JM; Thatcher JE
    J Biomed Opt; 2015 Dec; 20(12):121305. PubMed ID: 26305321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-invasive optical imaging techniques for burn-injured tissue detection for debridement surgery.
    Heredia-Juesas J; Thatcher JE; Yang Lu ; Squiers JJ; King D; Wensheng Fan ; DiMaio JM; Martinez-Lorenzo JA
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2893-2896. PubMed ID: 28268919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing multimodal optical imaging of perfusion in burn wounds.
    Lertsakdadet BS; Kennedy GT; Stone R; Kowalczewski C; Kowalczewski AC; Natesan S; Christy RJ; Durkin AJ; Choi B
    Burns; 2022 Jun; 48(4):799-807. PubMed ID: 34696954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A systematic review of machine learning and automation in burn wound evaluation: A promising but developing frontier.
    Huang S; Dang J; Sheckter CC; Yenikomshian HA; Gillenwater J
    Burns; 2021 Dec; 47(8):1691-1704. PubMed ID: 34419331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of burn injury using Raman spectroscopy and optical coherence tomography: An ex-vivo study on porcine skin.
    Rangaraju LP; Kunapuli G; Every D; Ayala OD; Ganapathy P; Mahadevan-Jansen A
    Burns; 2019 May; 45(3):659-670. PubMed ID: 30385061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of intra-operative image guidance in burn excision surgery with multispectral imaging and deep learning.
    Yu S; Dwight J; Siska RC; Burkart H; Quan P; Yi F; Du S; Daoud Y; Plant K; Criscitiello A; Molnar J; Thatcher JE
    Burns; 2024 Feb; 50(1):115-122. PubMed ID: 37821282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Full-field burn depth detection based on near-infrared hyperspectral imaging and ensemble regression.
    Wang P; Cao Y; Yin M; Li Y; Lv S; Huang L; Zhang D; Luo Y; Wu J
    Rev Sci Instrum; 2019 Jun; 90(6):064103. PubMed ID: 31255006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-imaging system for burn depth diagnosis.
    Ganapathy P; Tamminedi T; Qin Y; Nanney L; Cardwell N; Pollins A; Sexton K; Yadegar J
    Burns; 2014 Feb; 40(1):67-81. PubMed ID: 23790396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical coherence tomography provides an optical biopsy of burn wounds in children-a pilot study.
    Lindert J; Tafazzoli-Lari K; Tüshaus L; Larsen B; Bacia A; Bouteleux M; Adler T; Dalicho V; Vasileidos V; Kisch T; Stang F; Welzel J; Wünsch L
    J Biomed Opt; 2018 Oct; 23(10):1-6. PubMed ID: 30324791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial frequency domain imager based on a compact multiaperture camera: testing and feasibility for noninvasive burn severity assessment.
    Kennedy G; Kagawa K; Rowland R; Ponticorvo A; Tanida J; Durkin AJ
    J Biomed Opt; 2021 Aug; 26(8):. PubMed ID: 34387050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noninvasive Techniques for the Determination of Burn Severity in Real Time.
    Burmeister DM; Cerna C; Becerra SC; Sloan M; Wilmink G; Christy RJ
    J Burn Care Res; 2017; 38(1):e180-e191. PubMed ID: 27355653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early assessment of burn severity in human tissue ex vivo with multi-wavelength spatial frequency domain imaging.
    Poon C; Sunar U; Rohrbach DJ; Krishnamurthy S; Olsen T; Kent M; Weir NM; Simman R; Travers JB
    Toxicol In Vitro; 2018 Oct; 52():251-254. PubMed ID: 29859991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning in burn care and research: A systematic review of the literature.
    Liu NT; Salinas J
    Burns; 2015 Dec; 41(8):1636-1641. PubMed ID: 26233900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of hemoglobin breakdown products in the spectral analysis of burn wounds using spatial frequency domain spectroscopy.
    Saager RB; Rowland RA; Baldado ML; Kennedy GT; Bernal NP; Ponticorvo A; Christy RJ; Durkin AJ
    J Biomed Opt; 2019 Feb; 24(2):1-4. PubMed ID: 30724041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Risk predictions of surgical wound complications based on a machine learning algorithm: A systematic review.
    Zhang H; Zhao J; Farzan R; Alizadeh Otaghvar H
    Int Wound J; 2024 Jan; 21(1):e14665. PubMed ID: 38272811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D-perfusion analysis of burn wounds using hyperspectral imaging.
    Marotz J; Schulz T; Seider S; Cruz D; Aljowder A; Promny D; Daeschlein G; Wild T; Siemers F
    Burns; 2021 Feb; 47(1):157-170. PubMed ID: 33277087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of hyperspectral imaging as a modern aid in clinical assessment of burn wounds of the upper extremity.
    Promny D; Aich J; Püski T; Marti Edo A; Reichert B; Billner M
    Burns; 2022 May; 48(3):615-622. PubMed ID: 34857418
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.