BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 38361944)

  • 1. The role of aryl hydrocarbon receptor in vitiligo: a review.
    Li Y; Zeng Y; Chen Z; Tan X; Mei X; Wu Z
    Front Immunol; 2024; 15():1291556. PubMed ID: 38361944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the aryl hydrocarbon receptor signaling pathway in promoting mitochondrial biogenesis against oxidative damage in human melanocytes.
    Wang X; Li S; Liu L; Jian Z; Cui T; Yang Y; Guo S; Yi X; Wang G; Li C; Gao T; Li K
    J Dermatol Sci; 2019 Oct; 96(1):33-41. PubMed ID: 31543430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AHR promoter variant modulates its transcription and downstream effectors by allele-specific AHR-SP1 interaction functioning as a genetic marker for vitiligo.
    Wang X; Li K; Liu L; Shi Q; Song P; Jian Z; Guo S; Wang G; Li C; Gao T
    Sci Rep; 2015 Sep; 5():13542. PubMed ID: 26370050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The association of functional polymorphisms in the aryl hydrocarbon receptor (AHR) gene with the risk of vitiligo in Han Chinese populations.
    Wang XW; Li K; Guo S; Qiang HN; Liu L; Song P; Wei C; Yi XL; Jian Z; Li Q; Li CY; Gao TW
    Br J Dermatol; 2012 May; 166(5):1081-7. PubMed ID: 22211302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roflumilast enhances the melanogenesis and attenuates oxidative stress-triggered damage in melanocytes.
    Chen Z; Li Y; Xie Y; Nie S; Chen B; Wu Z
    J Dermatol Sci; 2023 May; 110(2):44-52. PubMed ID: 37069030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Baicalein protects human vitiligo melanocytes from oxidative stress through activation of NF-E2-related factor2 (Nrf2) signaling pathway.
    Ma J; Li S; Zhu L; Guo S; Yi X; Cui T; He Y; Chang Y; Liu B; Li C; Jian Z
    Free Radic Biol Med; 2018 Dec; 129():492-503. PubMed ID: 30342186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A New Insight into the Potential Role of Tryptophan-Derived AhR Ligands in Skin Physiological and Pathological Processes.
    Szelest M; Walczak K; Plech T
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33499346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research progress of vitiligo repigmentation: from oxidative stress to autoimmunity.
    Yu T; Wu Y; Lu Z
    Cell Mol Biol (Noisy-le-grand); 2024 Apr; 70(4):147-151. PubMed ID: 38678613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vitiligo: How do oxidative stress-induced autoantigens trigger autoimmunity?
    Xie H; Zhou F; Liu L; Zhu G; Li Q; Li C; Gao T
    J Dermatol Sci; 2016 Jan; 81(1):3-9. PubMed ID: 26387449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The enigma and challenges of vitiligo pathophysiology and treatment.
    Abdel-Malek ZA; Jordan C; Ho T; Upadhyay PR; Fleischer A; Hamzavi I
    Pigment Cell Melanoma Res; 2020 Nov; 33(6):778-787. PubMed ID: 32198977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting the elevated IFN-γ in vitiligo patients by human anti- IFN-γ monoclonal antibody hampers direct cytotoxicity in melanocyte.
    Ng CY; Chan YP; Chiu YC; Shih HP; Lin YN; Chung PH; Huang JY; Chen HK; Chung WH; Ku CL
    J Dermatol Sci; 2023 Jun; 110(3):78-88. PubMed ID: 37221109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The possible role of Wnt/β-catenin signalling in vitiligo treatment.
    Lin X; Meng X; Lin J
    J Eur Acad Dermatol Venereol; 2023 Nov; 37(11):2208-2221. PubMed ID: 36912722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perspectives of New Advances in the Pathogenesis of Vitiligo: From Oxidative Stress to Autoimmunity.
    Wang Y; Li S; Li C
    Med Sci Monit; 2019 Feb; 25():1017-1023. PubMed ID: 30723188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The nuclear factor (erythroid-derived 2)-like 2 (NRF2) antioxidant response promotes melanocyte viability and reduces toxicity of the vitiligo-inducing phenol monobenzone.
    Arowojolu OA; Orlow SJ; Elbuluk N; Manga P
    Exp Dermatol; 2017 Jul; 26(7):637-644. PubMed ID: 28370349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insight into the role of exosomes in vitiligo.
    Wong PM; Yang L; Yang L; Wu H; Li W; Ma X; Katayama I; Zhang H
    Autoimmun Rev; 2020 Nov; 19(11):102664. PubMed ID: 32942029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. α-Melanocyte-Stimulating Hormone Triggers Melanogenesis Via Activation of the Aryl Hydrocarbon Receptor Pathway in B16F10 Mouse Melanoma Cells.
    Bahraman AG; Jamshidzadeh A; Keshavarzi M; Arabnezhad MR; Mohammadi H; Mohammadi-Bardbori A
    Int J Toxicol; 2021; 40(2):153-160. PubMed ID: 33438493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in understanding vitiligo.
    Manga P; Elbuluk N; Orlow SJ
    F1000Res; 2016; 5():. PubMed ID: 27635239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Concise Review on the Role of Endoplasmic Reticulum Stress in the Development of Autoimmunity in Vitiligo Pathogenesis.
    Jadeja SD; Mayatra JM; Vaishnav J; Shukla N; Begum R
    Front Immunol; 2020; 11():624566. PubMed ID: 33613564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trends in Regenerative Medicine: Repigmentation in Vitiligo Through Melanocyte Stem Cell Mobilization.
    Birlea SA; Costin GE; Roop DR; Norris DA
    Med Res Rev; 2017 Jul; 37(4):907-935. PubMed ID: 28029168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular and molecular mechanisms involved in the action of vitamin D analogs targeting vitiligo depigmentation.
    Birlea SA; Costin GE; Norris DA
    Curr Drug Targets; 2008 Apr; 9(4):345-59. PubMed ID: 18393827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.