These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 38361944)

  • 1. The role of aryl hydrocarbon receptor in vitiligo: a review.
    Li Y; Zeng Y; Chen Z; Tan X; Mei X; Wu Z
    Front Immunol; 2024; 15():1291556. PubMed ID: 38361944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the aryl hydrocarbon receptor signaling pathway in promoting mitochondrial biogenesis against oxidative damage in human melanocytes.
    Wang X; Li S; Liu L; Jian Z; Cui T; Yang Y; Guo S; Yi X; Wang G; Li C; Gao T; Li K
    J Dermatol Sci; 2019 Oct; 96(1):33-41. PubMed ID: 31543430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of aryl hydrocarbon receptor agonists in the treatment of vitiligo.
    Bitterman D; Kabakova M; Wang JY; Collins A; Patel P; Gupta N; Zafar K; Cohen M; Jagdeo J
    Arch Dermatol Res; 2024 Oct; 316(9):659. PubMed ID: 39369105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AHR promoter variant modulates its transcription and downstream effectors by allele-specific AHR-SP1 interaction functioning as a genetic marker for vitiligo.
    Wang X; Li K; Liu L; Shi Q; Song P; Jian Z; Guo S; Wang G; Li C; Gao T
    Sci Rep; 2015 Sep; 5():13542. PubMed ID: 26370050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The association of functional polymorphisms in the aryl hydrocarbon receptor (AHR) gene with the risk of vitiligo in Han Chinese populations.
    Wang XW; Li K; Guo S; Qiang HN; Liu L; Song P; Wei C; Yi XL; Jian Z; Li Q; Li CY; Gao TW
    Br J Dermatol; 2012 May; 166(5):1081-7. PubMed ID: 22211302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roflumilast enhances the melanogenesis and attenuates oxidative stress-triggered damage in melanocytes.
    Chen Z; Li Y; Xie Y; Nie S; Chen B; Wu Z
    J Dermatol Sci; 2023 May; 110(2):44-52. PubMed ID: 37069030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Baicalein protects human vitiligo melanocytes from oxidative stress through activation of NF-E2-related factor2 (Nrf2) signaling pathway.
    Ma J; Li S; Zhu L; Guo S; Yi X; Cui T; He Y; Chang Y; Liu B; Li C; Jian Z
    Free Radic Biol Med; 2018 Dec; 129():492-503. PubMed ID: 30342186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A New Insight into the Potential Role of Tryptophan-Derived AhR Ligands in Skin Physiological and Pathological Processes.
    Szelest M; Walczak K; Plech T
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33499346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research progress of vitiligo repigmentation: from oxidative stress to autoimmunity.
    Yu T; Wu Y; Lu Z
    Cell Mol Biol (Noisy-le-grand); 2024 Apr; 70(4):147-151. PubMed ID: 38678613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vitiligo: How do oxidative stress-induced autoantigens trigger autoimmunity?
    Xie H; Zhou F; Liu L; Zhu G; Li Q; Li C; Gao T
    J Dermatol Sci; 2016 Jan; 81(1):3-9. PubMed ID: 26387449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The enigma and challenges of vitiligo pathophysiology and treatment.
    Abdel-Malek ZA; Jordan C; Ho T; Upadhyay PR; Fleischer A; Hamzavi I
    Pigment Cell Melanoma Res; 2020 Nov; 33(6):778-787. PubMed ID: 32198977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting the elevated IFN-γ in vitiligo patients by human anti- IFN-γ monoclonal antibody hampers direct cytotoxicity in melanocyte.
    Ng CY; Chan YP; Chiu YC; Shih HP; Lin YN; Chung PH; Huang JY; Chen HK; Chung WH; Ku CL
    J Dermatol Sci; 2023 Jun; 110(3):78-88. PubMed ID: 37221109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The possible role of Wnt/β-catenin signalling in vitiligo treatment.
    Lin X; Meng X; Lin J
    J Eur Acad Dermatol Venereol; 2023 Nov; 37(11):2208-2221. PubMed ID: 36912722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perspectives of New Advances in the Pathogenesis of Vitiligo: From Oxidative Stress to Autoimmunity.
    Wang Y; Li S; Li C
    Med Sci Monit; 2019 Feb; 25():1017-1023. PubMed ID: 30723188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nuclear factor (erythroid-derived 2)-like 2 (NRF2) antioxidant response promotes melanocyte viability and reduces toxicity of the vitiligo-inducing phenol monobenzone.
    Arowojolu OA; Orlow SJ; Elbuluk N; Manga P
    Exp Dermatol; 2017 Jul; 26(7):637-644. PubMed ID: 28370349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insight into the role of exosomes in vitiligo.
    Wong PM; Yang L; Yang L; Wu H; Li W; Ma X; Katayama I; Zhang H
    Autoimmun Rev; 2020 Nov; 19(11):102664. PubMed ID: 32942029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. α-Melanocyte-Stimulating Hormone Triggers Melanogenesis Via Activation of the Aryl Hydrocarbon Receptor Pathway in B16F10 Mouse Melanoma Cells.
    Bahraman AG; Jamshidzadeh A; Keshavarzi M; Arabnezhad MR; Mohammadi H; Mohammadi-Bardbori A
    Int J Toxicol; 2021; 40(2):153-160. PubMed ID: 33438493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in understanding vitiligo.
    Manga P; Elbuluk N; Orlow SJ
    F1000Res; 2016; 5():. PubMed ID: 27635239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Concise Review on the Role of Endoplasmic Reticulum Stress in the Development of Autoimmunity in Vitiligo Pathogenesis.
    Jadeja SD; Mayatra JM; Vaishnav J; Shukla N; Begum R
    Front Immunol; 2020; 11():624566. PubMed ID: 33613564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trends in Regenerative Medicine: Repigmentation in Vitiligo Through Melanocyte Stem Cell Mobilization.
    Birlea SA; Costin GE; Roop DR; Norris DA
    Med Res Rev; 2017 Jul; 37(4):907-935. PubMed ID: 28029168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.