These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 38362220)
21. Machine Learning Classifiers for Twitter Surveillance of Vaping: Comparative Machine Learning Study. Visweswaran S; Colditz JB; O'Halloran P; Han NR; Taneja SB; Welling J; Chu KH; Sidani JE; Primack BA J Med Internet Res; 2020 Aug; 22(8):e17478. PubMed ID: 32784184 [TBL] [Abstract][Full Text] [Related]
22. Spread of COVID-19 Vaccine Misinformation in the Ninth Inning: Retrospective Observational Infodemic Study. Calac AJ; Haupt MR; Li Z; Mackey T JMIR Infodemiology; 2022; 2(1):e33587. PubMed ID: 35320982 [TBL] [Abstract][Full Text] [Related]
23. Using #ActuallyAutistic on Twitter for Precision Diagnosis of Autism Spectrum Disorder: Machine Learning Study. Jaiswal A; Washington P JMIR Form Res; 2024 Feb; 8():e52660. PubMed ID: 38354045 [TBL] [Abstract][Full Text] [Related]
24. Multi-label multi-class COVID-19 Arabic Twitter dataset with fine-grained misinformation and situational information annotations. Obeidat R; Gharaibeh M; Abdullah M; Alharahsheh Y PeerJ Comput Sci; 2022; 8():e1151. PubMed ID: 36532803 [TBL] [Abstract][Full Text] [Related]
25. Exploring content of misinformation about HPV vaccine on twitter. Kornides ML; Badlis S; Head KJ; Putt M; Cappella J; Gonzalez-Hernadez G J Behav Med; 2023 Apr; 46(1-2):239-252. PubMed ID: 35896853 [TBL] [Abstract][Full Text] [Related]
26. Monitoring Misinformation on Twitter During Crisis Events: A Machine Learning Approach. Hunt K; Agarwal P; Zhuang J Risk Anal; 2022 Aug; 42(8):1728-1748. PubMed ID: 33190276 [TBL] [Abstract][Full Text] [Related]
27. Using Deep Learning to Identify Linguistic Features that Facilitate or Inhibit the Propagation of Anti- and Pro-Vaccine Content on Social Media. Argyris YA; Zhang N; Bashyal B; Tan PN 2022 IEEE Int Conf Digit Health IEEE IDCH 2022 (2022); 2022 Jul; 2022():107-116. PubMed ID: 37975063 [TBL] [Abstract][Full Text] [Related]
28. Social media mining for birth defects research: A rule-based, bootstrapping approach to collecting data for rare health-related events on Twitter. Klein AZ; Sarker A; Cai H; Weissenbacher D; Gonzalez-Hernandez G J Biomed Inform; 2018 Nov; 87():68-78. PubMed ID: 30292855 [TBL] [Abstract][Full Text] [Related]
29. Tweet Topics and Sentiments Relating to COVID-19 Vaccination Among Australian Twitter Users: Machine Learning Analysis. Kwok SWH; Vadde SK; Wang G J Med Internet Res; 2021 May; 23(5):e26953. PubMed ID: 33886492 [TBL] [Abstract][Full Text] [Related]
30. A Typology of Social Media Use by Human Service Nonprofits: Mixed Methods Study. Xue J; Shier ML; Chen J; Wang Y; Zheng C; Chen C J Med Internet Res; 2024 May; 26():e51698. PubMed ID: 38718390 [TBL] [Abstract][Full Text] [Related]
31. COVID-19 Vaccine Hesitancy on Social Media: Building a Public Twitter Data Set of Antivaccine Content, Vaccine Misinformation, and Conspiracies. Muric G; Wu Y; Ferrara E JMIR Public Health Surveill; 2021 Nov; 7(11):e30642. PubMed ID: 34653016 [TBL] [Abstract][Full Text] [Related]
32. Characterization of Vaccine Tweets During the Early Stage of the COVID-19 Outbreak in the United States: Topic Modeling Analysis. Jiang LC; Chu TH; Sun M JMIR Infodemiology; 2021; 1(1):e25636. PubMed ID: 34604707 [TBL] [Abstract][Full Text] [Related]
33. CoAID-DEEP: An Optimized Intelligent Framework for Automated Detecting COVID-19 Misleading Information on Twitter. Abdelminaam DS; Ismail FH; Taha M; Taha A; Houssein EH; Nabil A IEEE Access; 2021; 9():27840-27867. PubMed ID: 34786308 [TBL] [Abstract][Full Text] [Related]
34. Antivaccine Movement and COVID-19 Negationism: A Content Analysis of Spanish-Written Messages on Twitter. Herrera-Peco I; Jiménez-Gómez B; Romero Magdalena CS; Deudero JJ; García-Puente M; Benítez De Gracia E; Ruiz Núñez C Vaccines (Basel); 2021 Jun; 9(6):. PubMed ID: 34203946 [TBL] [Abstract][Full Text] [Related]
35. Identifying False Human Papillomavirus (HPV) Vaccine Information and Corresponding Risk Perceptions From Twitter: Advanced Predictive Models. Tomaszewski T; Morales A; Lourentzou I; Caskey R; Liu B; Schwartz A; Chin J J Med Internet Res; 2021 Sep; 23(9):e30451. PubMed ID: 34499043 [TBL] [Abstract][Full Text] [Related]
36. Mis-tweeting communication: a Vaccine Hesitancy analysis among twitter users in Italy. Gori D; Durazzi F; Montalti M; Di Valerio Z; Reno C; Fantini MP; Remondini D Acta Biomed; 2021 Oct; 92(S6):e2021416. PubMed ID: 34739459 [TBL] [Abstract][Full Text] [Related]
37. Characterizing the Discussion of Antibiotics in the Twittersphere: What is the Bigger Picture? Kendra RL; Karki S; Eickholt JL; Gandy L J Med Internet Res; 2015 Jun; 17(6):e154. PubMed ID: 26091775 [TBL] [Abstract][Full Text] [Related]
38. Social Media Monitoring of the COVID-19 Pandemic and Influenza Epidemic With Adaptation for Informal Language in Arabic Twitter Data: Qualitative Study. Alsudias L; Rayson P JMIR Med Inform; 2021 Sep; 9(9):e27670. PubMed ID: 34346892 [TBL] [Abstract][Full Text] [Related]
39. Interdisciplinary Approach to Identify and Characterize COVID-19 Misinformation on Twitter: Mixed Methods Study. Isip Tan IT; Cleofas J; Solano G; Pillejera JG; Catapang JK JMIR Form Res; 2023 Jun; 7():e41134. PubMed ID: 37220196 [TBL] [Abstract][Full Text] [Related]
40. Statin Twitter: Human and Automated Bot Contributions, 2010 to 2022. Slavin SD; Berman AN; Beam AL; Navar AM; Mittleman MA J Am Heart Assoc; 2024 Apr; 13(7):e032678. PubMed ID: 38533942 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]