These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 38362410)

  • 1. Machine learning from quantum chemistry to predict experimental solvent effects on reaction rates.
    Chung Y; Green WH
    Chem Sci; 2024 Feb; 15(7):2410-2424. PubMed ID: 38362410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computing Kinetic Solvent Effects and Liquid Phase Rate Constants Using Quantum Chemistry and COSMO-RS Methods.
    Chung Y; Green WH
    J Phys Chem A; 2023 Jul; 127(27):5637-5651. PubMed ID: 37381077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An extensible framework for capturing solvent effects in computer generated kinetic models.
    Jalan A; West RH; Green WH
    J Phys Chem B; 2013 Mar; 117(10):2955-70. PubMed ID: 23301874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Solvation Free Energies of Ionic Solutes in Neutral Solvents.
    Kröger LC; Müller S; Smirnova I; Leonhard K
    J Phys Chem A; 2020 May; 124(20):4171-4181. PubMed ID: 32336096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting Solvent Effects on S
    Taylor M; Yu H; Ho J
    J Phys Chem B; 2022 Nov; 126(44):9047-9058. PubMed ID: 36300819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ConfSolv: Prediction of Solute Conformer-Free Energies across a Range of Solvents.
    Pattanaik L; Menon A; Settels V; Spiekermann KA; Tan Z; Vermeire FH; Sandfort F; Eiden P; Green WH
    J Phys Chem B; 2023 Nov; 127(47):10151-10170. PubMed ID: 37966798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linear free energy relationships between aqueous phase hydroxyl radical reaction rate constants and free energy of activation.
    Minakata D; Crittenden J
    Environ Sci Technol; 2011 Apr; 45(8):3479-86. PubMed ID: 21410278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solubility prediction, solvate and cocrystal screening as tools for rational crystal engineering.
    Loschen C; Klamt A
    J Pharm Pharmacol; 2015 Jun; 67(6):803-11. PubMed ID: 25851032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting hydration energies for multivalent ions.
    Andersson MP; Stipp SL
    J Comput Chem; 2014 Oct; 35(28):2070-5. PubMed ID: 25212881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical Evaluation of Implicit Solvent Models for Predicting Aqueous Oxidation Potentials of Neutral Organic Compounds.
    Guerard JJ; Arey JS
    J Chem Theory Comput; 2013 Nov; 9(11):5046-58. PubMed ID: 26583419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graph-Based Approaches for Predicting Solvation Energy in Multiple Solvents: Open Datasets and Machine Learning Models.
    Ward L; Dandu N; Blaiszik B; Narayanan B; Assary RS; Redfern PC; Foster I; Curtiss LA
    J Phys Chem A; 2021 Jul; 125(27):5990-5998. PubMed ID: 34191512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Group Contribution and Machine Learning Approaches to Predict Abraham Solute Parameters, Solvation Free Energy, and Solvation Enthalpy.
    Chung Y; Vermeire FH; Wu H; Walker PJ; Abraham MH; Green WH
    J Chem Inf Model; 2022 Feb; 62(3):433-446. PubMed ID: 35044781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the oxidation of ebselen and other organoselenium compounds using explicit solvent networks.
    Bayse CA; Antony S
    J Phys Chem A; 2009 May; 113(19):5780-5. PubMed ID: 19374403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of partition and distribution coefficients in various solvent pairs with COSMO-RS.
    Tshepelevitsh S; Hernits K; Leito I
    J Comput Aided Mol Des; 2018 Jun; 32(6):711-722. PubMed ID: 29846868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of the direct-COSMO-RS solvent model for Diels-Alder reactions in aqueous solution.
    Theilacker K; Buhrke D; Kaupp M
    J Chem Theory Comput; 2015 Jan; 11(1):111-21. PubMed ID: 26574209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics of chemical reactions with COSMO-RS: the extreme case of charge separation or recombination.
    Deglmann P; Schenk S
    J Comput Chem; 2012 May; 33(14):1304-20. PubMed ID: 22430261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculation of solvation free energies with DCOSMO-RS.
    Klamt A; Diedenhofen M
    J Phys Chem A; 2015 May; 119(21):5439-45. PubMed ID: 25635509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multisolvent Models for Solvation Free Energy Predictions Using 3D-RISM Hydration Thermodynamic Descriptors.
    Subramanian V; Ratkova E; Palmer D; Engkvist O; Fedorov M; Llinas A
    J Chem Inf Model; 2020 Jun; 60(6):2977-2988. PubMed ID: 32311268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid QSPR models for the prediction of the free energy of solvation of organic solute/solvent pairs.
    Borhani TN; García-Muñoz S; Vanesa Luciani C; Galindo A; Adjiman CS
    Phys Chem Chem Phys; 2019 Jun; 21(25):13706-13720. PubMed ID: 31204418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.