These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The Impact of Ligand Field Symmetry on Molecular Qubit Coherence. Kazmierczak NP; Mirzoyan R; Hadt RG J Am Chem Soc; 2021 Oct; 143(42):17305-17315. PubMed ID: 34615349 [TBL] [Abstract][Full Text] [Related]
3. Structural Effects on the Spin Dynamics of Potential Molecular Qubits. Atzori M; Benci S; Morra E; Tesi L; Chiesa M; Torre R; Sorace L; Sessoli R Inorg Chem; 2018 Jan; 57(2):731-740. PubMed ID: 29280628 [TBL] [Abstract][Full Text] [Related]
4. Crystalline Arrays of Copper Porphyrin Qubits Based on Ion-Paired Frameworks. Moisanu CM; Jacobberger RM; Skala LP; Stern CL; Wasielewski MR; Dichtel WR J Am Chem Soc; 2023 Aug; 145(33):18447-18454. PubMed ID: 37552123 [TBL] [Abstract][Full Text] [Related]
5. Binding Sites, Vibrations and Spin-Lattice Relaxation Times in Europium(II)-Based Metallofullerene Spin Qubits. Hu Z; Ullah A; Prima-Garcia H; Chin SH; Wang Y; Aragó J; Shi Z; Gaita-Ariño A; Coronado E Chemistry; 2021 Sep; 27(52):13242-13248. PubMed ID: 34268813 [TBL] [Abstract][Full Text] [Related]
6. Insights on the coupling between vibronically active molecular vibrations and lattice phonons in molecular nanomagnets. Ullah A; Baldoví JJ; Gaita-Ariño A; Coronado E Dalton Trans; 2021 Aug; 50(32):11071-11076. PubMed ID: 34323911 [TBL] [Abstract][Full Text] [Related]
7. Detrimental Increase of Spin-Phonon Coupling in Molecular Qubits on Substrates. Mullin KR; Greer RB; Waters MJ; Amdur MJ; Sun L; Freedman DE; Rondinelli JM ACS Appl Mater Interfaces; 2024 Jul; 16(30):40160-40169. PubMed ID: 39016442 [TBL] [Abstract][Full Text] [Related]
8. Illuminating Ligand Field Contributions to Molecular Qubit Spin Relaxation via Kazmierczak NP; Hadt RG J Am Chem Soc; 2022 Nov; 144(45):20804-20814. PubMed ID: 36382468 [TBL] [Abstract][Full Text] [Related]
9. Understanding Covalent versus Spin-Orbit Coupling Contributions to Temperature-Dependent Electron Spin Relaxation in Cupric and Vanadyl Phthalocyanines. Follmer AH; Ribson RD; Oyala PH; Chen GY; Hadt RG J Phys Chem A; 2020 Nov; 124(44):9252-9260. PubMed ID: 33112149 [TBL] [Abstract][Full Text] [Related]
10. First-Principles Investigation of Spin-Phonon Coupling in Vanadium-Based Molecular Spin Quantum Bits. Albino A; Benci S; Tesi L; Atzori M; Torre R; Sanvito S; Sessoli R; Lunghi A Inorg Chem; 2019 Aug; 58(15):10260-10268. PubMed ID: 31343163 [TBL] [Abstract][Full Text] [Related]
11. Electron spin relaxation of copper(II) complexes in glassy solution between 10 and 120 K. Fielding AJ; Fox S; Millhauser GL; Chattopadhyay M; Kroneck PM; Fritz G; Eaton GR; Eaton SS J Magn Reson; 2006 Mar; 179(1):92-104. PubMed ID: 16343958 [TBL] [Abstract][Full Text] [Related]
12. Spin-Phonon Coupling and Slow-Magnetic Relaxation in Pristine Ferrocenium. Amoza M; Maxwell L; Aliaga-Alcalde N; Gómez-Coca S; Ruiz E Chemistry; 2021 Nov; 27(66):16440-16447. PubMed ID: 34582589 [TBL] [Abstract][Full Text] [Related]
13. The dynamic ligand field of a molecular qubit: decoherence through spin-phonon coupling. Mirzoyan R; Hadt RG Phys Chem Chem Phys; 2020 May; 22(20):11249-11265. PubMed ID: 32211668 [TBL] [Abstract][Full Text] [Related]
14. Raman electron spin-lattice relaxation with the Debye-type and with real phonon spectra in crystals. Hoffmann SK; Lijewski S J Magn Reson; 2013 Feb; 227():51-6. PubMed ID: 23274344 [TBL] [Abstract][Full Text] [Related]
15. The critical role of ultra-low-energy vibrations in the relaxation dynamics of molecular qubits. Garlatti E; Albino A; Chicco S; Nguyen VHA; Santanni F; Paolasini L; Mazzoli C; Caciuffo R; Totti F; Santini P; Sessoli R; Lunghi A; Carretta S Nat Commun; 2023 Mar; 14(1):1653. PubMed ID: 36964152 [TBL] [Abstract][Full Text] [Related]
16. Probing Vibrational Symmetry Effects and Nuclear Spin Economy Principles in Molecular Spin Qubits. Santanni F; Albino A; Atzori M; Ranieri D; Salvadori E; Chiesa M; Lunghi A; Bencini A; Sorace L; Totti F; Sessoli R Inorg Chem; 2021 Jan; 60(1):140-151. PubMed ID: 33305944 [TBL] [Abstract][Full Text] [Related]
17. Electron spin relaxation of exchange coupled pairs of transition metal ions in solids. Ti2+-Ti2+ pairs and single Ti2+ ions in SrF2 crystals. Hoffmann SK; Lijewski S; Goslar J; Ulanov VA J Magn Reson; 2010 Jan; 202(1):14-23. PubMed ID: 19857979 [TBL] [Abstract][Full Text] [Related]
18. A novel non-adiabatic spin relaxation mechanism in molecular qubits. Shushkov P J Chem Phys; 2024 Apr; 160(16):. PubMed ID: 38651803 [TBL] [Abstract][Full Text] [Related]