These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38362422)

  • 21. Promoting solution-phase superlattices of CsPbBr
    Mireles Villegas N; Hernandez JC; John JC; Sheldon M
    Nanoscale; 2023 Jun; 15(22):9728-9737. PubMed ID: 37171143
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetics of the self-assembly of nanocrystal superlattices measured by real-time in situ X-ray scattering.
    Weidman MC; Smilgies DM; Tisdale WA
    Nat Mater; 2016 Jul; 15(7):775-81. PubMed ID: 26998914
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Binary Assembly of PbS and Au Nanocrystals: Patchy PbS Surface Ligand Coverage Stabilizes the CuAu Superlattice.
    Boles MA; Talapin DV
    ACS Nano; 2019 May; 13(5):5375-5384. PubMed ID: 31017762
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Perovskite nanocrystal superlattices: self-assembly, collective behavior, and applications.
    Yan D; Shan Q; Dong Y; Han L; Wu X; Peng Y; Zeng H
    Chem Commun (Camb); 2023 May; 59(36):5365-5374. PubMed ID: 37070699
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hierarchical Materials Design by Pattern Transfer Printing of Self-Assembled Binary Nanocrystal Superlattices.
    Paik T; Yun H; Fleury B; Hong SH; Jo PS; Wu Y; Oh SJ; Cargnello M; Yang H; Murray CB; Kagan CR
    Nano Lett; 2017 Mar; 17(3):1387-1394. PubMed ID: 28146634
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-dimensional nanocrystal superlattices grown in nanoliter microfluidic plugs.
    Bodnarchuk MI; Li L; Fok A; Nachtergaele S; Ismagilov RF; Talapin DV
    J Am Chem Soc; 2011 Jun; 133(23):8956-60. PubMed ID: 21510705
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Setting Carriers Free: Healing Faulty Interfaces Promotes Delocalization and Transport in Nanocrystal Solids.
    Walravens W; Solano E; Geenen F; Dendooven J; Gorobtsov O; Tadjine A; Mahmoud N; Ding PP; Ruff JPC; Singer A; Roelkens G; Delerue C; Detavernier C; Hens Z
    ACS Nano; 2019 Nov; 13(11):12774-12786. PubMed ID: 31693334
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional noble metal nanoparticle superlattices grown at interfaces.
    Kimura K; Pradeep T
    Phys Chem Chem Phys; 2011 Nov; 13(43):19214-25. PubMed ID: 21989423
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unravelling three-dimensional adsorption geometries of PbSe nanocrystal monolayers at a liquid-air interface.
    Geuchies JJ; Soligno G; Geraffy E; Hendrikx CP; Overbeek CV; Montanarella F; Slot MR; Konovalov OV; Petukhov AV; Vanmaekelbergh D
    Commun Chem; 2020 Mar; 3(1):28. PubMed ID: 36703462
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Controlling nanocrystal superlattice symmetry and shape-anisotropic interactions through variable ligand surface coverage.
    Choi JJ; Bealing CR; Bian K; Hughes KJ; Zhang W; Smilgies DM; Hennig RG; Engstrom JR; Hanrath T
    J Am Chem Soc; 2011 Mar; 133(9):3131-8. PubMed ID: 21306161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Decoding the superlattice and interface structure of truncate PbS nanocrystal-assembled supercrystal and associated interaction forces.
    Li R; Bian K; Hanrath T; Bassett WA; Wang Z
    J Am Chem Soc; 2014 Aug; 136(34):12047-55. PubMed ID: 25100031
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Importance of Unbound Ligand in Nanocrystal Superlattice Formation.
    Winslow SW; Swan JW; Tisdale WA
    J Am Chem Soc; 2020 May; 142(21):9675-9685. PubMed ID: 32401509
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Shape-anisotropy driven symmetry transformations in nanocrystal superlattice polymorphs.
    Bian K; Choi JJ; Kaushik A; Clancy P; Smilgies DM; Hanrath T
    ACS Nano; 2011 Apr; 5(4):2815-23. PubMed ID: 21344877
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two-dimensional binary and ternary nanocrystal superlattices: the case of monolayers and bilayers.
    Dong A; Ye X; Chen J; Murray CB
    Nano Lett; 2011 Apr; 11(4):1804-9. PubMed ID: 21413781
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Many-body effects in nanocrystal superlattices: departure from sphere packing explains stability of binary phases.
    Boles MA; Talapin DV
    J Am Chem Soc; 2015 Apr; 137(13):4494-502. PubMed ID: 25773648
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancement in electron transport and light emission efficiency of a Si nanocrystal light-emitting diode by a SiCN/SiC superlattice structure.
    Huh C; Kim BK; Park BJ; Jang EH; Kim SH
    Nanoscale Res Lett; 2013 Jan; 8(1):14. PubMed ID: 23289520
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tubular Monolayer Superlattices of Hollow Mn
    Li T; Xue B; Wang B; Guo G; Han D; Yan Y; Dong A
    J Am Chem Soc; 2017 Sep; 139(35):12133-12136. PubMed ID: 28837323
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Collective topo-epitaxy in the self-assembly of a 3D quantum dot superlattice.
    Abelson A; Qian C; Salk T; Luan Z; Fu K; Zheng JG; Wardini JL; Law M
    Nat Mater; 2020 Jan; 19(1):49-55. PubMed ID: 31611669
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessing the relevance of building block crystallinity for tuning the stiffness of gold nanocrystal superlattices.
    Yan C; Portalès H; Goubet N; Arfaoui I; Sirotkin S; Mermet A; Pileni MP
    Nanoscale; 2013 Oct; 5(20):9523-7. PubMed ID: 24056754
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A General Approach to Stabilize Nanocrystal Superlattices by Covalently Bonded Ligands.
    Wang S; Lu S; Tian X; Liu W; Si Y; Yang Y; Qiu H; Zhang H; Li J
    ACS Nano; 2023 Feb; 17(3):2792-2801. PubMed ID: 36651568
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.