These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 38362791)
1. Deciphering Oxygen-Independent Augmented Photodynamic Oncotherapy by Facilitating the Separation of Electron-Hole Pairs. Hu X; Fang Z; Sun F; Zhu C; Jia M; Miao X; Huang L; Hu W; Fan Q; Yang Z; Huang W Angew Chem Int Ed Engl; 2024 Apr; 63(15):e202401036. PubMed ID: 38362791 [TBL] [Abstract][Full Text] [Related]
2. Constructing Heavy-Atom-Free Photosensitizers for Hypoxic Tumor Phototherapy Based on Donor-Excited Photoinduced Electron-Transfer-Driven Type-I and Type-II Mechanisms. Miao J; Yao G; Huo Y; Wang B; Zhao W; Guo W ACS Appl Mater Interfaces; 2024 Aug; 16(31):40428-40443. PubMed ID: 39042585 [TBL] [Abstract][Full Text] [Related]
3. Toward Type I/II ROS Generation Photoimmunotherapy by Molecular Engineering of Semiconducting Perylene Diimide. Zhang J; Ma W; Luo H; Zhang K; Lv J; Jiang L; Huang Y; Song J; Yang Z; Huang W Adv Healthc Mater; 2024 Mar; 13(8):e2303175. PubMed ID: 37985358 [TBL] [Abstract][Full Text] [Related]
4. Oxygen-independent organic photosensitizer with ultralow-power NIR photoexcitation for tumor-specific photodynamic therapy. Tang Y; Li Y; Li B; Song W; Qi G; Tian J; Huang W; Fan Q; Liu B Nat Commun; 2024 Mar; 15(1):2530. PubMed ID: 38514624 [TBL] [Abstract][Full Text] [Related]
5. Reversible pH-switchable NIR-II nano-photosensitizer for precise imaging and photodynamic therapy of tumors. Chai Y; Sun Y; Sheng Z; Zhu Y; Du T; Zhu B; Yu H; Dong B; Liu Y; Wang HY Acta Biomater; 2024 Oct; 188():315-328. PubMed ID: 39243836 [TBL] [Abstract][Full Text] [Related]
6. Vacancy Engineering to Regulate Photocatalytic Activity of Polymer Photosensitizers for Amplifying Photodynamic Therapy against Hypoxic Tumors. Bai J; Peng C; Lv W; Liu J; Hei Y; Bo X ACS Appl Mater Interfaces; 2021 Aug; 13(33):39055-39065. PubMed ID: 34433248 [TBL] [Abstract][Full Text] [Related]
7. Amplifying Free Radical Generation of AIE Photosensitizer with Small Singlet-Triplet Splitting for Hypoxia-Overcoming Photodynamic Therapy. Xiao YF; Chen WC; Chen JX; Lu G; Tian S; Cui X; Zhang Z; Chen H; Wan Y; Li S; Lee CS ACS Appl Mater Interfaces; 2022 Feb; 14(4):5112-5121. PubMed ID: 35048696 [TBL] [Abstract][Full Text] [Related]
8. Cationization to boost both type I and type II ROS generation for photodynamic therapy. Yu Y; Wu S; Zhang L; Xu S; Dai C; Gan S; Xie G; Feng G; Tang BZ Biomaterials; 2022 Jan; 280():121255. PubMed ID: 34810034 [TBL] [Abstract][Full Text] [Related]
9. NIR-Driven Intracellular Photocatalytic O Sang D; Wang K; Sun X; Wang Y; Lin H; Jia R; Qu F ACS Appl Mater Interfaces; 2021 Mar; 13(8):9604-9619. PubMed ID: 33605733 [TBL] [Abstract][Full Text] [Related]
10. Scintillator-Based Nanohybrids with Sacrificial Electron Prodrug for Enhanced X-ray-Induced Photodynamic Therapy. Wang H; Lv B; Tang Z; Zhang M; Ge W; Liu Y; He X; Zhao K; Zheng X; He M; Bu W Nano Lett; 2018 Sep; 18(9):5768-5774. PubMed ID: 30052464 [TBL] [Abstract][Full Text] [Related]
11. NIR-II Emissive Superoxide Radical Photogenerator for Photothermal/Photodynamic Therapy against Hypoxic Tumor. Xiao H; Wang Y; Chen J; Xi S; Duan Z; Zhan Q; Tian Y; Wang L; Qu J; Liu R Adv Healthc Mater; 2024 Aug; 13(20):e2303183. PubMed ID: 38117062 [TBL] [Abstract][Full Text] [Related]
12. Programmable therapeutic nanoscale covalent organic framework for photodynamic therapy and hypoxia-activated cascade chemotherapy. He H; Du L; Xue H; Wu J; Shuai X Acta Biomater; 2022 Sep; 149():297-306. PubMed ID: 35811069 [TBL] [Abstract][Full Text] [Related]
13. Manganese-Based Nanoplatform As Metal Ion-Enhanced ROS Generator for Combined Chemodynamic/Photodynamic Therapy. Wang P; Liang C; Zhu J; Yang N; Jiao A; Wang W; Song X; Dong X ACS Appl Mater Interfaces; 2019 Nov; 11(44):41140-41147. PubMed ID: 31603650 [TBL] [Abstract][Full Text] [Related]
14. Mitochondria-targeted nanoplatforms for enhanced photodynamic therapy against hypoxia tumor. Wen J; Luo Y; Gao H; Zhang L; Wang X; Huang J; Shang T; Zhou D; Wang D; Wang Z; Li P; Wang Z J Nanobiotechnology; 2021 Dec; 19(1):440. PubMed ID: 34930284 [TBL] [Abstract][Full Text] [Related]
15. Upconversion Nanoparticle-Induced Multimode Photodynamic Therapy Based on a Metal-Organic Framework/Titanium Dioxide Nanocomposite. Shi Z; Zhang K; Zada S; Zhang C; Meng X; Yang Z; Dong H ACS Appl Mater Interfaces; 2020 Mar; 12(11):12600-12608. PubMed ID: 32096623 [TBL] [Abstract][Full Text] [Related]
16. Manipulating the Dynamics of Dark Excited States in Organic Materials for Phototheranostics. Hu W; Prasad PN; Huang W Acc Chem Res; 2021 Feb; 54(3):697-706. PubMed ID: 33301301 [TBL] [Abstract][Full Text] [Related]
17. Recent advances in type I organic photosensitizers for efficient photodynamic therapy for overcoming tumor hypoxia. Lu B; Wang L; Tang H; Cao D J Mater Chem B; 2023 May; 11(21):4600-4618. PubMed ID: 37183673 [TBL] [Abstract][Full Text] [Related]
18. Covalent Organic Framework Nanocarriers of Singlet Oxygen for Oxygen-Independent Concurrent Photothermal/Photodynamic Therapy to Ablate Hypoxic Tumors. Dutta D; Wang J; Li X; Zhou Q; Ge Z Small; 2022 Sep; 18(37):e2202369. PubMed ID: 35971160 [TBL] [Abstract][Full Text] [Related]
19. 808 nm Light-triggered and hyaluronic acid-targeted dual-photosensitizers nanoplatform by fully utilizing Nd(3+)-sensitized upconversion emission with enhanced anti-tumor efficacy. Hou Z; Deng K; Li C; Deng X; Lian H; Cheng Z; Jin D; Lin J Biomaterials; 2016 Sep; 101():32-46. PubMed ID: 27267626 [TBL] [Abstract][Full Text] [Related]
20. A Cascade Strategy Boosting Hydroxyl Radical Generation with Aggregation-Induced Emission Photosensitizers-Albumin Complex for Photodynamic Therapy. Li Y; Zhang D; Yu Y; Zhang L; Li L; Shi L; Feng G; Tang BZ ACS Nano; 2023 Sep; 17(17):16993-17003. PubMed ID: 37606032 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]