These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38362893)

  • 1. Covalent Conjugation of Small Molecule Inhibitors and Growth Factors to a Silk Fibroin-Derived Bioink to Develop Phenotypically Stable 3D Bioprinted Cartilage.
    Majumder N; Roy C; Doenges L; Martin I; Barbero A; Ghosh S
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):9925-9943. PubMed ID: 38362893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a biomimetic arch-like 3D bioprinted construct for cartilage regeneration using gelatin methacryloyl and silk fibroin-gelatin bioinks.
    Chakraborty J; Fernández-Pérez J; van Kampen KA; Roy S; Ten Brink T; Mota C; Ghosh S; Moroni L
    Biofabrication; 2023 Apr; 15(3):. PubMed ID: 36947889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Bioprinting Using Cross-Linker-Free Silk-Gelatin Bioink for Cartilage Tissue Engineering.
    Singh YP; Bandyopadhyay A; Mandal BB
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):33684-33696. PubMed ID: 31453678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocompatible fluorescent silk fibroin bioink for digital light processing 3D printing.
    Lee YJ; Lee JS; Ajiteru O; Lee OJ; Lee JS; Lee H; Kim SW; Park JW; Kim KY; Choi KY; Hong H; Sultan T; Kim SH; Park CH
    Int J Biol Macromol; 2022 Jul; 213():317-327. PubMed ID: 35605719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs.
    Das S; Pati F; Choi YJ; Rijal G; Shim JH; Kim SW; Ray AR; Cho DW; Ghosh S
    Acta Biomater; 2015 Jan; 11():233-46. PubMed ID: 25242654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Advanced Bioconjugation Strategy for Covalent Tethering of TGFβ3 with Silk Fibroin Matrices and its Implications in the Chondrogenesis Profile of Human BMSCs and Human Chondrocytes: A Paradigm Shift in Cartilage Tissue Engineering.
    Majumder N; Seit S; Bhabesh NS; Ghosh S
    Adv Healthc Mater; 2024 Apr; 13(10):e2303513. PubMed ID: 38291832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formulation and Characterization of a Novel Oxidized Alginate-Gelatin-Silk Fibroin Bioink with the Aim of Skin Regeneration.
    Sanaei K; Zamanian A; Mashayekhan S; Ramezani T
    Iran Biomed J; 2023 Sep; 27(5):280-93. PubMed ID: 37873644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs.
    Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K
    Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D bioprinting of photo-crosslinkable silk methacrylate (SilMA)-polyethylene glycol diacrylate (PEGDA) bioink for cartilage tissue engineering.
    Bandyopadhyay A; Mandal BB; Bhardwaj N
    J Biomed Mater Res A; 2022 Apr; 110(4):884-898. PubMed ID: 34913587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-based 3D bioprinting of bone tissue scaffolds with tunable mechanical properties and architecture from photocurable silk fibroin.
    Rajput M; Mondal P; Yadav P; Chatterjee K
    Int J Biol Macromol; 2022 Mar; 202():644-656. PubMed ID: 35066028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional silk fibroin-gelatin/chondroitin sulfate/hyaluronic acid-aloe vera scaffold supports in vitro chondrogenesis of bone marrow mesenchymal stem cells and reduces inflammatory effect.
    Wuttisiriboon K; Tippayawat P; Daduang J; Limpaiboon T
    J Biomed Mater Res B Appl Biomater; 2023 Aug; 111(8):1557-1570. PubMed ID: 36988305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the advantages of 3D bioprinting and 3D spheroids in deciphering the osteoarthritis healing mechanism using human chondrocytes and polarized macrophages.
    Majumder N; Roy S; Sharma A; Arora S; Vaishya R; Bandyopadhyay A; Ghosh S
    Biomed Mater; 2024 Jan; 19(2):. PubMed ID: 38198731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs.
    Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA
    Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structurally and Functionally Optimized Silk-Fibroin-Gelatin Scaffold Using 3D Printing to Repair Cartilage Injury In Vitro and In Vivo.
    Shi W; Sun M; Hu X; Ren B; Cheng J; Li C; Duan X; Fu X; Zhang J; Chen H; Ao Y
    Adv Mater; 2017 Aug; 29(29):. PubMed ID: 28585319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual crosslinking silk fibroin/pectin-based bioink development and the application on neural stem/progenitor cells spheroid laden 3D bioprinting.
    Lee HW; Chen KT; Li YE; Yeh YC; Chiang CY; Lee IC
    Int J Biol Macromol; 2024 Jun; 269(Pt 2):131720. PubMed ID: 38677692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crosslinker-free silk/decellularized extracellular matrix porous bioink for 3D bioprinting-based cartilage tissue engineering.
    Zhang X; Liu Y; Luo C; Zhai C; Li Z; Zhang Y; Yuan T; Dong S; Zhang J; Fan W
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111388. PubMed ID: 33254994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing.
    Kim SH; Yeon YK; Lee JM; Chao JR; Lee YJ; Seo YB; Sultan MT; Lee OJ; Lee JS; Yoon SI; Hong IS; Khang G; Lee SJ; Yoo JJ; Park CH
    Nat Commun; 2018 Apr; 9(1):1620. PubMed ID: 29693652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D bioprinted silk fibroin hydrogels for tissue engineering.
    Kim SH; Hong H; Ajiteru O; Sultan MT; Lee YJ; Lee JS; Lee OJ; Lee H; Park HS; Choi KY; Lee JS; Ju HW; Hong IS; Park CH
    Nat Protoc; 2021 Dec; 16(12):5484-5532. PubMed ID: 34716451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of Chondrogenesis and Hypertrophy in Silk Fibroin-Gelatin-Based 3D Bioprinted Constructs.
    Chameettachal S; Midha S; Ghosh S
    ACS Biomater Sci Eng; 2016 Sep; 2(9):1450-1463. PubMed ID: 33440583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Bioprinting of Bone Marrow Mesenchymal Stem Cell-Laden Silk Fibroin Double Network Scaffolds for Cartilage Tissue Repair.
    Ni T; Liu M; Zhang Y; Cao Y; Pei R
    Bioconjug Chem; 2020 Aug; 31(8):1938-1947. PubMed ID: 32644779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.